LAGRANGE POINTS L_1, L_2 AND L_3

ROBERT J. VANDERBEI
Operations Research and Financial Engineering, Princeton University

Keywords: Celestial mechanics, n-Body Problem, Lagrange points

1. TWO BODIES

Let R denote the Sun-Earth distance. Let r denote the Earth-L_2 distance. Let M denote the mass of the Sun. Let m denote the mass of the Earth. Let ρ denote the distance from the center of the Sun to the center of mass of the system. Let

$$z_E(t) = (R - \rho)e^{2\pi it/T}$$

denote Earth’s orbit about the center of mass of the system and let

$$z_S(t) = -\rho e^{2\pi it/T}$$

denote the orbit of the Sun about the center of mass. The fact that the center of mass is at the origin in our coordinate system leads to

$$mz_E(t) + Mz_S(t) = 0$$

which simplifies to

$$m(R - \rho) = M\rho$$

which we can solve for ρ:

$$\rho = \frac{m}{m + M} R$$

Earth’s orbit satisfies Newton’s law of motion:

$$mz''_E(t) = -GM(z_E - z_S)/|z_E - z_S|^3$$

Of course, we can solve for T in terms of the masses and R using

$$z''_E(t) = -\frac{4\pi^2}{T^2} z_E(t) = -\frac{4\pi^2}{T^2} R - \rho \left(z_E(t) - z_S(t)\right) = -\frac{4\pi^2}{T^2} \frac{M}{M + m} \left(z_E(t) - z_S(t)\right)$$

We get

$$\frac{4\pi^2}{T^2} \frac{M}{M + m} = GM/R^3.$$

Hence,

$$T = 2\pi \sqrt{\frac{R^3}{G(M + m)}}.$$

2. THIRD BODY

Now we consider a third body with infinitesimally small mass. We will call it the Lagrange body. Let

$$z_L(t) = (R - \rho + r)e^{2\pi it/T}$$

denote its orbit. If we assume that r is a small positive constnat, then this new body can be thought of as orbiting at the Sun/Earth L_2 point. But, if r is negative, this body could be viewed as orbiting at L_1 or even at L_3. And, if we let r be complex valued, then this body could be at L4 or L5. The L_2 orbit must also satisfy Newton’s law of motion:

$$z''_L(t) = -GM(z_L - z_S)/|z_L - z_S|^3 - Gm(z_L - z_E)/|z_L - z_E|^3.$$
Again, we can simplify using
\[z''_L(t) = -\frac{4\pi^2}{T^2} z_L(t) \]
\[z_L - z_S = (R + r)e^{2\pi it/T} = \frac{R + r}{R - \rho + r} z_L \]
and
\[z_L - z_E = re^{2\pi it/T} = \frac{r}{R - \rho + r} z_L. \]

We get
\[(M + m)\frac{1}{R^3} = \frac{M}{R - \rho + r} + \frac{1}{(R + r)^2} + \frac{m}{R - \rho + r} \frac{1}{r^2}. \]

At this point things get tricky if \(r \) is not real because the length of a complex number involves the number, its conjugate and something to the 3/2’s power. So, henceforth, let’s assume that \(r \) is real. In this case, our formula simplifies to
\[(M + m)\frac{1}{R^3} = \varepsilon_1 M + \frac{1}{R - \rho + r} + \varepsilon_2 m \frac{1}{R - \rho + r} \frac{1}{r^2} \]
where \(\varepsilon_1 = 1 \) and \(\varepsilon_2 = 1 \) when \(r \) is positive (the \(L_2 \) scenario), \(\varepsilon_1 = 1 \) and \(\varepsilon_2 = -1 \) when \(r \) is negative but \(R + r \) is positive (the \(L_1 \) scenario) and \(\varepsilon_1 = -1 \) and \(\varepsilon_2 = -1 \) when both \(r \) and \(R + r \) are negative (the \(L_3 \) scenario). Cross multiplying, we get
\[(M + m)r^2(R - \rho + r)(R + r)^2 = \varepsilon_1 MR^3r^2 + \varepsilon_2 mR^3(R + r)^2 \]

Now, we use the fact that \(R - \rho = \frac{M}{M + m} R \) to rewrite the equation as:
\[r^2(MR + (M + m)r)(R + r)^2 = \varepsilon_1 MR^3r^2 + \varepsilon_2 mR^3(R + r)^2 \]

Expanding the powers, we get
\[r^2MR(R^2 + 2Rr + r^2) + r^2(M + m)r(R^2 + 2Rr + r^2) = \varepsilon_1 MR^3r^2 + \varepsilon_2 mR^3(R^2 + 2Rr + r^2) \]

Simplifying, we get
\[r^2MR((1 - \varepsilon_1)R^2 + 2Rr + r^2) + r^2(M + m)r(R^2 + 2Rr + r^2) = \varepsilon_2 mR^3(R^2 + 2Rr + r^2) \]

Dividing by \(M \) and \(R^3 \) and letting \(\mu = m/M \) and \(x = r/R \), we get
\[x^2 ((1 - \varepsilon_1) + 2x + x^2) + x^2(1 + \mu)x(1 + 2x + x^2) = \varepsilon_2 \mu(1 + 2x + x^2) \]

Writing it as a simple polynomial in \(x \), we get
\[(1 + \mu)x^5 + (3 + 2\mu)x^4 + (3 + \mu)x^3 + (1 - \varepsilon_1 - \varepsilon_2 \mu)x^2 - 2\varepsilon_2 \mu x - \varepsilon_2 \mu = 0 \]

In the Earth/Sun system, \(\mu = 3.0 \times 10^{-6} \). For each of the three scenarios \((L_1, L_2, L_3) \), we used Python to find the roots to this 5-th degree polynomial. In each case, we find that four of the roots are complex. The sole real root is root of interest. Here’s what we get:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>1 + x</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_1)</td>
<td>0.99003345</td>
</tr>
<tr>
<td>(L_2)</td>
<td>1.01003322</td>
</tr>
<tr>
<td>(L_3)</td>
<td>-0.99999825</td>
</tr>
</tbody>
</table>

For the \(L_2 \) case, our answer is in pretty close agreement to the value one finds on Wikipedia: \(1 + x = 1.01004 \).