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STOCHASTIC WAVES1

BY

E. B. DYNKIN AND R. J. VANDERBEI

ABSTRACT.Let </> be a real valued function defined on the state space of a Markov

process x,. Let t, be the first time x, gets to a level set of <J> which is ; units higher

than the one on which it started. We call the time changed process x, = x, a

stochastic wave. We give conditions under which this process is Markovian and we

evaluate its infinitesimal operator.

1. Introduction.

1.1. Transforming a Markov process x, by a random time change rt is an

important tool in stochastic analysis. Usually, t, is the inverse of an additive

functional of xt. We consider a different type of random time change: let 0 be a

function defined on the state space of x, and put

(1.1) t, = inf(í>0;<í)(xJ)><í)(^0) + í}.

In words, t, is the first time the process x, gets to a level set of <i> that is / units higher

than the one on which it started. The time changed process,

t T, '

is again a Markov process which we call the stochastic wave corresponding to x, and

<p. We assume that (¡>ixt) is continuous in /. Hence

(1.2) <¡>ix,) = <t>{x0) + t.

Intuitively, this means that x, moves deterministically to successively higher level

sets,

(1-3) Gs={y.4>iy)=s},

however, its position on a given level set is random.

Stochastic waves were used in [8] to study harmonic functions associated with

several Markov processes. Such functions (first introduced in [2]) are related to a

certain class of higher order partial differential equations which are neither elliptic

nor hyperbolic. In [8], a probabilistic formula for the solution of the Dirichlet

problem for these equations was given. It involves stochastic waves and their

infinitesimal operators. In this paper we investigate the infinitesimal operators of

stochastic waves corresponding to diffusions.

1.2. One example of a stochastic wave has been known for a long time; namely,

the one corresponding to Brownian motion x, = ix), xf) in R2 and the function
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772 E. B. DYNKIN AND R. J. VANDERBEI

(¡>ix\ x2) = x1. It was shown in [6] that x2 is the symmetric Cauchy process with

infinitesimal operator given by

(1.4) Hf(x) =lfifiy) -fix) ~(y- x)J'ix))(y - Xy2dy,
IT JR

where c is strictly positive and uc means ul^<c (///does not depend on c). Of course

x) is uniform motion and so the infinitesimal operator Ä of jc, — (jcj, jc,2) acts on

smooth functions by the formula

(1.5) Âf(x\ x2) = 3L(x\ x2) + Hf{x\ x2),
ax

where H is applied to / as a function of x2 holding A fixed. If the semigroup

associated with the symmetric Cauchy process is regarded as acting on L2iR2), then

its infinitesimal operator H is minus the Hilbert transform of the derivative (see e.g.

[7])-
A formula similar to (1.5) was given in [8] for the stochastic wave corresponding

to Brownian motion in Rd and <¡>ix) —\x\ .

1.3. In this paper we prove that the infinitesimal operator of a stochastic wave

corresponding to a diffusion and a smooth function (¡> has the form

(1.6) Äfix) = c{x)[jnix) + Hf{x)).

Here c(jc) =| V<K-*0 |A dfix)/dn is the derivative of / at x in the direction of the

exterior normal to the boundary

G'={y:*(y) = +(x)}

of the set

r'={y:*(y)<*{x)},

and ///(jc) is the interior normal derivative at jc of the harmonic2 function in Tx

which coincides with / on Gx (see Theorem 1). Roughly speaking, the first term

captures the deterministic component expressed by (1.2) and the second term

describes the random position of jc, on each level set of <>. Theorem 2 establishes an

integral formula similar to ( 1.4) for the operator //. This means that, if we disregard

the deterministic component, the stochastic wave behaves locally at point jc as an

infinitely divisible process with Levy-Khintchine measure equal to the normal

derivative of the harmonic measure for Tx.

1.4. In addition to the applications considered in [8], stochastic waves are useful

for the study of Gaussian random fields associated with Markov processes.

1.5. In §2 we first make some definitions and establish notations so that, by the

end of the section, we are able to give precise formulations of the results outlined

above. §§3 and 4 are devoted to the proofs of the main results.

2We say that a function h is harmonic in a set T if Ah = 0 in the interior of T, where A is the

differential generator of the diffusion.
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2. The main results.

2.1. We use the terminology and notations common in the theory of Markov

processes (see e.g. [1]). Let 4> be a measurable function on the state space £ of a

strong Markov process3 X — {x„ Wr Px, 6,). Let t, be the random time change

defined by (1.1) and put §; = fT and d, = 0T. The process X = (jc,, %, Px, 6t) is

called the stochastic wave corresponding to X and 4>. To insure that X is a Markov

process, it is sufficient that the following conditions hold F^-almost surely for all

xEE:

2.I.A. t, < oo for allí > 0.

2.I.B. <t>ix,) is continuous in t.

2.l.C. t0 = 0.

Indeed, condition 2.1.A guarantees that jc, is defined for all t > 0, condition 2.1.B

implies that

and this, together with 2.1 .C, implies that X is a strong Markov process.

2.2. Let ty> denote the class of bounded measurable functions on E. For functions/

and/, / > 0, in ty>, we write/= s-lim,i0/ if/, converges uniformly to/as 110. The

semigroup Tt and infinitesimal operator A are defined by the formulas

Tj(x) = pxf(xt),     /eft,

Af= s- lim {TJ -f)/t,      /G6D,
no

where ty) consists of those functions/ G ft for which this limit exists.

The analogs for Â^will be denoted f,, Ä, ty).

We consider the topology G in E generated by sets (jc: r < (¡>{x) < s} (in other

words, the weakest topology such that $ is continuous). We claim that the operator

A is local in G, i.e., for every x E E and every (3-neighborhood U of jc, Äfx{x) =

Af2{x) if /,, f2 E ty) and/, = f2 in U. Indeed, let / be an open interval which contains

<Í>(jc). Then, for sufficiently small t, <}>{x) + t E I and, by (1.2), jc, G <í>"'(/) = U a.s.

Px. Therefore, T,f{x) depends only on values of/in U and so does Af{x).

We put/ G ty)x if there exist/* G <*D and a 6-neighborhood U of jc such that/ = /*

in U. For every/ G ty)x we put Äf{x) = Äf*{x) (the right side does not depend on U

and/*).

2.3. Let U denote the collection of unit vectors in w-dimensional Euclidean space

Rm. For a differentiable function / and a vector u G U, let

&(y) = Vfiy)-u

denote the derivative of /in the direction of u.

For every set T in Rm having nonempty interior T0, let C/A(r), / s* 0, 0 « A =s 1,

denote the class of functions / which have derivatives up to order / in T0 with

'We assume throughout that the killing time f is identically infinity.
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774 E. B. DYNKIN AND R. J. VANDERBEI

continuous extensions to T and for which

d'f
(2.1) l/,A;r 2 «up

/</ dux • ■ ■ du

+ sup lim

iy)

d'f
dux • ■ ■ du¡ iy)

d'f
du. du¡ (*)

Lv

is finite4 (the suprema are taken over all vectors m, G Uiy) and all y G T).

A Markov process X in Rm is called a diffusion if <>D contains C2'°(Äm) and if the

infinitesimal operator A restricted to functions /G C2'°iRm) is a second order

elliptic differential operator

Af(x) = Ia'J(x)-^-f(x) + SW^t/Í*)
y OJC OJC7 , rJjC

whose coefficients a'7 and è' are of class C°'x{Rm) for some X > 0. The operator A

when restricted to C2'°{Rm) is called the differential generator of X

The diffusion with coefficients a'J = 5,y and b' = 0 is called Brownian motion.

2.4. We denote by t(T) the first exit time of x, from T

t(T) = inf{r:/>0,x, ÍT}.

Letrf = {^:^V<a}(cf(U)).

Theorem 1. Let X be a diffusion in Rm and let <}> be a continuous function. Suppose

that

2.4.A. t{Ts) < oo a.s. PJorallx ERm,sE R.

2.4.B. Each point of Gs is a regular point5, for T/.

Then X is a strong Markov process.

Suppose, in addition, that, for some x E Rm, Tx is bounded and there exists a

neighborhood V of Gx such that

2.4.C.<i> is of class C^'XV),

2.4.D. v<j> ̂ 0 in V.

Then every function f in C2,xiV) is in ty)x and Af{x) is given by (1.6).6

2.5. Let r be a closed bounded domain in Rm with a smooth boundary aT. Then

there exists a unique continuous function p{y, z), y E T, z E 3T, y ¥= z, such that,

for all/G ft,

Pyf(xT(r))=f p(y,z)f(z)s(dz),
Ar

where t(T) is the first exit time from T and s is surface area on 8T (see [5, §21 and

1, §2, Chapter 13]). We call p the Poisson kernel for T {p{y, z)s{dz) is the harmonic

measure for T).

If A = 0, we omit the second sum.

5x is a regular point for Ve if Px{t(T) = 0} = 1.

6 The case of unbounded T" is not covered by Theorem 1. It requires additional consideration.
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Theorem 2. Suppose that X is Brownian motion in Rm. m > 2. Let <¡> and x satisfy

the conditions of Theorem 1. Then the Poisson kernel p for Tx has the following

properties:

2.5.A. For every boundary point z =£ x, p has an interior normal derivative with

respect to the first variable: -dp{x, z)/dnx.

2.5.B. There is a constant K, such that \ dp{x, z)/dnx |< K\ x — z \'m, for all

z E o.Tx.

ForfEC2'\V),

(2.2) Hf(x) = f   ^{x,z)if{x)-f{z)-v9f{xy{x-z))s{dz),

where Vg>/(jc) is the projection of the gradient V/(jc) onto the tangent plane to dTx at

x.

3. Proof of Theorem 1.

3.1. Let F be a neighborhood of Gx described in Theorem 1. There exists an

interval I = {a0, b0) containing <¡>{x) such that Ts is bounded and dTs — Gs for all

s E [a0, b0].

For y G V, put \J{y) = {« G U: u- V<f>(>0 = 0}. Fot s E I and v G C2'\TS), we

define a boundary norm |ü|/X;C by (2.1) where the suprema are taken over all

w, G V{y) and all y E Gs. We will need the following Schauder estimate: there is a

constant K such that for any s E I0 and any v G C2X(TJ),

O-1) \V\2,\;r,<K{\Av\o,\;rt + lÜl2,A;gJ-

This is proved for example in [4, §3.2].

3.2. It follows from conditions 2.4.A and B and the continuity of trajectories of

diffusions that X satisfies 2.1.A, B and C and so it is a strong Markov process.

Let a0 < ax < </>(jc) <bx< b0. Put V, - {a, < <¡> =s b,}, i = 0,1. For every / G

C2,X(F), there exists a function of class C2'x{Rm) which vanishes outside Vx and

coincides with / in a neighborhood of the level set Gx. Therefore we can assume

without loss of generality that/vanishes on the complement of Vx.

There exists 8 > 0 such that, for 0 < t < 8, Gs+, E Vxc if í G /, and Gs+, C V if

s E I. For s E I put

(3-2) vsiy) = Pyfixr(T¡)) -fiy).

By Theorem 13.9 in [1], vs is the unique solution of the boundary value problem

(3.3) Av = -Af   in Ts - Gs,       v = 0   on Gs.

By Theorem 36. V in [5], vs G C2'X{TS).

For each y E V0, let ly{s), s E I, be the solution of the equation dl/ds —

V<f>(/)/| V<M0 |2 satisfying l{<t>{y)) — y. In other words, lv{ ■ ) is the gradient path of

<|> which passes through y and is parametrized by the condition ly{s) E Gs for all

s EL

Let d{r¡, f) be the arc length of /.,(•) between 17 = f{r) and f = ly{s). For all

y E V0, r < s E I,

(3.4) d(rjA)= f\l'(w)\dw^K(s-r).
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Put

n,= Wiy)/\v*iy)\,

Q(s,y) = W5(y)-ny,

h,(y) = \if,f(y)-f(y)),

h(y) = i-<i(+(y)>y)\v+(y)\
[o,

It follows from (3.2) that h{x) is equal to the right side of (1.6). Therefore Theorem 1

will be proved if we show that h — s-limn0hr

3.3. Suppose that this is not true. Then there exists a sequence tn tending to zero, a

sequence yn E Rm, and an e > 0 such that | h,{yn) — h{yn) |> e for all n. We may

assume that t„< 8 for all aï. It is easy to see that ht = 0 on F0C for t < 8 and, since

h = 0onV¿,ynEV0.

Put rn = (¡>{y„), sn = (¡>{yn) + tn and z„ = lv(,sn). By Cauchy's mean value theo-

rem,

, ,   ,      uJa)-u4a)     .„,    „.,,    ,„ ,,-i
*^) = -^(0-<frU)=-|g(v^)llv»U)| .

where-y„ is a point on /   lying between yn and z„. Hence,

Mä) - *(ä)I <IÖ(a- Â) - Ofo. ä)|c(A) +|ß(r„, Ä)| |c(Ä) - c(Ä-)j-,

where c =| V<#>|A The points yn and yn belong to V and d{yn, yn) -» 0. Hence by

2.4.C and D, c(-y„) is bounded and | c(yn) — c{yn) | tends to zero as n -» oo. By (3.1)

and (3.3), | ß(r„, Ä) |<| t*, \2^r^ <K\Af\0X.Sn <K\Af\0X.Va. To arrive at a con-

tradiction we shall show that | Q{sn, yn) — Q{rn, yn) | tends to zero as n -* oo.

To this end we prove that

(3.5) \Q(s, z) - Q(r, y)\< Kx{\s - rf +\z -y\ +\nz - ny\),

for all r, s, y and z such that y E V0 and r = <i>(y) < </>(z) < í < 6 + 8. First we

write

\Qis, z) - Qir, y)\< Ax + A2 + A3,

where

A, =|(Vu(z) - Ws{y))-n:\,       A2=\vvs{y)- {nz - ny)\,

A3=|v(c,-tv)(>)-nJi|.

By (3.1), we have

(3.6) kl2.X;r,'<^2M/lo.A;K.

By the mean value property, A, < | vs |2)0.r | z - -y | and so, by (3.6), A, is bounded by

a constant times \z — y \. Since A2 «s| oj^-r I nz ~ ny I > i* follows from (3.6) that

A2 is bounded by a constant times \nz — n \ . To estimate A3, put wrä = u5 — or.

Then wrs E C2A(rr), Awrs = 0 in Tr — Gr, and wrs = oä on Gr. Hence A3 is just the

ytv0,

sEl,yETs

t>0,y ERm,
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magnitude of the normal derivative of a harmonic function which, according to

Theorem 35,111 in [5], can be estimated in terms of two derivatives of its boundary

values,

(3-7) A3 < tf3|tL|2j0.,rr.

Let tj be a point on dTr and let f = l^is). Applying the mean value theorem to

\p{u) = vs{lv{u)) and using the fact that \^{r) = piri) and i//(s) = 0 we get

(3-8) k(i?)|<W,,o;rJ¿('l,f)-

For any unit vector u,

do,

du
(tí)(3.9)

and, by the mean value theorem,

(3.10)

dvs,   ,      dv
Ä(,,)-Ä(f) + dvs

du in

dvs(   .      dv
kko;r,¿(Tí.f)-

To estimate the second term in (3.9), we use the fact that vs = 0 on Gs to write

fit)

-¿(ï) = iu-nt){wM)-nï)

and so, for w £ U(i)), we have

(3.11) £«> ^kli^rJWf-nJ-

Since | V<i> I"1 is bounded on U, we see that | dn¡    /dw | is bounded and so

(3.12)
»I di     f\ "

15       7|1    Jr\ dw   'i">
dw<K4{s - r).

Combining (3.4), (3.9), (3.10), (3.11) and (3.12), we find that,  for uEU(ij),

| dvs{t])/du | is bounded by a constant times s — r.

Now consider two vectors, ux, u2 E U(t/). The procedure for estimating

id/dux)dvsi"t\)/du2 is analogous to the first derivative case except, instead of the

mean value theorem, we use Holder continuity to get

¿^)-^^)|«Wuur.«f.»))'-

We find then that | {d/dux)dvsit\)/du21 is bounded by a constant times {s — r)x and

so | vs |20.2r < K5{s - r)x. Putting this into (3.7), we get (3.5).

4. Proof of Theorem 2.

4.1. Put r = <b{x) and write r = Tr and G = Gr. Let

nfiy) = PyfiXr'T))-

By Theorem 21,VI in [5] the Poisson kernel p for T exists and is given by the

formula7

(4.1)   p(y,z) = 2!;(y,z)-AJt(y,z'h(z',z)s(dz'),       yET,zEG,y^z,

'Formula (4.1) follows from formulas (21.2), (21.3), (17.3) and (17.8) in [5],
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where £ is the inward normal derivative with respect to the z variable of

giy,z) =
{m — 2)ío;

i ,2 —m

\y — z\       ,    m > 3,

-—\og\y-z\, m = 2,
¿IT

and y is defined by the integral equation

(4.2)     yiy,z) = Z(y,z)-2(tiy,z')y(z',z)s{dz'),       y,zEG,y^z
JG

(<om is the surface area of the unit ball in Rm).

4.2. By iterating formula (4.2) and using the fact that convolutions of the kernel £

with itself have lower order singularities, it is possible to show that y{y, z) =

Oi\y — z\2~m) and, for y ¥= z, y{y, z) is twice continuously differentiable with

respect to the x variables (of course, derivatives are taken in directions tangent to

G). Consequently, using continuity and differentiabihty properties of double layer

potentials (see e.g. [5, §15 or 3, §VI.6]), it can be shown that p has the following

properties:

4.2.A. The derivative dp{y, z)/dny exists and can be continued to a continuous

function of y in T \ {z}.

4.2.B. There exists a constant K such that | dp{y, z)/dn \< K\x — z \'m, for all

y ElxH{T\G),z EG.

Properties 2.5.A and B follow from 3.3.A and B.

By Theorem 36,1 in [5], n/G C2X(r) and so ///(jc) = dUf{x)/dnx exists. It is

given by

y^x       d{y,x)

where the limit is taken as y tends to jc along lx n {T \ G). Using 4.2.A and B and

the fact that linear functions are harmonic, we have

(4.3)     nf{y)-f{x) = r d       z)h{z)s{dz) + v f{x). jp*
d{y,x) JGdnp d{y,x)

where h{z) = f{x) — f{z) — v«p/(jc) • (jc — z) and y is a point of lx lying between y

and jc. Since/ G C2X{V), the function h{z)/\ x — z \2 is bounded on G. In view of

4.2.A and B, the integral in (4.3) tends to the one in (2.2) as y tends to jc along lx.

Since (y — x)/d{y, x) tends to -nx as y tends to x along lx, we see that the second

term in (4.3) tends to zero.
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