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ABSTRACT 

A common model for the time aL (sec) taken by a DNA strand of length L (cfn) 
to unravel is to assume that new points of unraveling occur along the strand as a 
Poisson process of rate A. l/(cmx ec) in space-time and that the unraveling 
propogates at speed vl2 (crn/sec) in each direction until time aL. . 

We solve the open problem to determine the distribution of 'h by rmding it 
Laplace transform and using it to show that a x = L 2A.lv--700, Ch is nearly a 
constant, 

[ 
2A. 1 y. 

'h = A.
1
y log( ~ ) . 

We also derive (modulo some small gap) the more ifecise limiting asymp otic 
formula : for - 00 < e < 00 

p [aL < _I 1 [~(lOg(L2A./Y)) + ~ e 2 II 
-v A.V '(log(L Alv» 

where 'V is defined by the equation: 

l.V(x) = .logv(x) + x, x;:: L 

These results are obtained by interchanging the role of pace and time to uncover 
an underlying Markov process which can be tudied in detail. 



1. INTRODUCTION 

The problem we are interested in is to find a rela tion between tbe length 
of a trand of DNA and the time it takes for such a strand to unravel. 
Unraveling is triggered by the release of an enzyme into the urrounding 
cytoplasm. According to the usual model for unraveling of DNA we 
assume that there are a large number of enzymes released and they come 
into contact with the strand of DNA at random places and at random time . 
If an enzyme contacts the strand at a place which ha yet to unravel, it 
begin unraveling in both dire~tions from the point of contact at a uniform 
rate. 

We assume that the trand ha length L and that there is a Pois on 
point process with intensity f... in pace-time, [O,L ]x [0, (0), representing 
the appearance of an enzyme at a particular place and time. Choosing 
convenient units we may assume that. each point of unraveling propogates 
at a rate of 112. 

Throughout most of the paper we make an important irnplifying 
assumption. amely, we assume that at time zero the strand begin 
unraveling at both its endpoints. This is an unrealistic assumption but it 
makes the mathematics easier. In Section 4, we will show that our 
asymptotic results for this altered model agree with those for the real 
model. 

A chematic picture of the process is shown in Figure 1. The Pois on 
points are shown as star. Note that some points are irrelevant since the 
DNA has already unraveled at the specified point by the time the enzyme 
arrived. onetheless, in this picture there are four arrivals that do cause 
additiol1al unraveling . . The time at which the entire chain is unraveled i 
represented by the highest point on the jagged curve. 
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Figure 1. Raveled DNA vs Time 

The problem is to find the distribution of the height of the jagged curve 
as a function of the length L of the strand of DNA. 

Before we can begin our analysis, we must make a simple change of 
coordinates. In words, what we need to do is imagine that we are drifting 
through the cytoplasm at ~ rate equal to the rate at which one end unravels 
and in a direction parallel to the strand. This amounts to making a shear 
transfor!Dation in space-time~ That is, if we use y for the spatial coordinate 
and s for the temporal coordinate, then the transformation IS 

y' ::= y+ s/2, s' ::= s. For notational convenience, we drop the primes in 
the -new coordinate system. The new picture for the problem is shown m 

Figure 2. 
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Figure 2. After Shearing 

The Poisson point process is invariant under our shear transformation (and, 
·n fact, any measure preserving transformation). Also, now the strand 
appears to be unraveling only at one end and at a unit rate. A moment's 
though t reveals that the number and .length_r of the intervals remaining at 
any time s are tbe same in both Figures 1 and 2. 

The important observation to make i that tbe jagged line that we have 
been drawing is now a trajectory of a Markov process. The Markov process 
Xl can be described as follows. Basically, it consists of uniform upward 
motion at unit speed with occasional jumps downward. The downward 

jumps are Gdntrolled by an exponential clock. The exponential clock ticks 
at a rate proportional to the height of the process. In fact the jump rate is 
precisely /..Xt- The new position i uniformly distributed on the interval 
[0 Xc]. Note that the time cale of the Markov process is the space scale for 

the actual 0 A problem. This can potenriaUy cause some onfusion . So 
whenever we refer to "time " for Xl we will use quotes to emphasize chat it 
i not time in the original problem. 

For such a simple process, it IS easy to write down the transition 
emigroup: 



x 

Trf(x) = (1- 'Axt)f(x+ r) + A.xcff(y) dy + oct) . (1 . 1) 
o x 

From (1. 1), we see that the infinitesimal generator i given by 

x 

Af(x) = f'(x) + ')..-5 (f(y)- f(x )dy. 
o 

(1. 2) 

As an aside, we note that it is easy to compute the stationary 
distributiC?n for this Markov process. Indeed, letting X.,., denote a random 
variable with this distribution, the limiting di tribution turns out to be 

emi-Gaussian: 

P{Xco ~ x} = (1.3) 

We return now to the matter at hand. Put 

(1.4) 

Our maio result is the following. 

THEOREM A L ECJLn _ ("l-110gL2"l)f1/2. . S ~ 00, I\, I\, 

This theorem is proved in Section 2. 

ote that CJL is almost not random for large L. More precisely, in 
Section 3, we derive (modulo some small gaps) the following limiting 
asymptotic formula for CJL: 

(1.5) 

where x = log(L 2A.), - 00 < 9 < 00 and 'II 1 he unique function 

characterized as the larger of the two solutions to 

'VCx) = log o/(x) + x, x;::: 1. 



We remark that the right side of (1. 5) is similar to the usual maximum laws 
that appear in the theory of maxima for tationary Gaussian proces es [1 ]. 
This i perhaps not surpri ing when one realizes that (h i defined a [he 
maximum of a Markov proce s that, while not quite Gaussian, is 
asymptotically emi-Gau sian . ote that (1 .5) show that (5L is for large 

L nearly the constant ."j ~ ~(x) with a random error that tends to zero 

like l / \jl(x) . 

Finally, we note that the convergence rate in our main theorem and in 
(l. 5) could be slow and that this could have an impact on app lying this 
formula to real problem. We leave the study of the rate of convergence to 
future endeavors. 

2. MOMENT CALCULATION 

Thi section i devoted to the proof of our main theorem. First, we 
introduce, for each s~ 0, the first hitting time of the level s: 

'ts = inf {t: Xl?' s}. (2.1) 

There i a natural duality between (h and 'ts: 

(2.2) 

The advantage of introducing 'ts is that we can explicitly evaluate its _ 
Laplace transfoT!D. Indeed "" for e~ich fixed a> 0, let 

(we use Ex faT expectations calculated when the process starts at x and we 
use E to denote expectation computed when the process Xl starts at 
zero). It is well known that / is the solution to the following equations: 

AI (x) = at (x), 05 x .s s (2.3) 

/(s) = 1. (2.4) 

Since the operator A is not purely a differential operator, it i desirable to 

differentiate (2.3) once: 



f" (x) - Axf' (x) ::= at' (x) o~x~ s. (2.5) 

We need to introduce one extra condition to guarantee that a solution to 
(2.5) (2.4) i also a solution to (2.3), (2.4). The extra condition is 

f' (0) = af (0) . 

It is easy to solve the system (2.5), (2.4), (2.6). The solution is: 

f(x) = 

x 

1 + afeuu+A.U2I2du 
o 
s 

1 + a f eUU+ Au212du 
o 

Of course, we are mostly interested in x= 0: 

- u't Ee s ::= f (0) = 1 
s 

1 + a f e Uu+ A.U212 du 
o 

We can use (2.2) to write (2.7) in terms of crt: 

(2.6) 

(2.7) 

(2.8) 

Equating the right-hand side in (2.7) to the right-hand ide m (2.8), 
multiplying both sides by nsn- 1 and integrating, we get 

(2.9) 

Let InCa ) denote the integral on the right in (2.9). We can now use 
standard Tauberian arguments to uncover the asymptotic behavior of Ecr7 
a t tends to 00 by studying the behavior of InCa) as a tends to O. 



Let 

~(a.) = 

LEMMA 1. (Upper bound) 

Proof. For s near 0, a good lower bound on the denominator of the 
integrand defining InCa) is simply 1. For large values of s, we need a 
more careful estimate. Clearly, 

s s 

f eOu+ ')..s,
212

du ~ f e Au212du 
o 0 

(the second inequality holding whenever s~ 1). Hence, we can split the 
range of in tegration into two parts: one from 0 to ~+ 1 and the other 
from ~+ 1 to 00 (where ~ is so e fixed positive quantity). Doing thi , 
we get 

~+ 1 OQ 

f nsn-1ds + ~ f nsn - le - I..(s - 1)2 /2ds. 

o ex. ~+ 1 

loce (s- l)/s~ ~/(~+. 1) for s~ ~+ 1, we see that 

ow all we need to do i estimate the tail of the nth momen t of a normal 
di tribution: 



.... 
cP n(X) = f rne- r2 f2dr. 

:z; 

We u e the usual estimate (see, e.g. [2] Vol 1 p. 175): 

Applying this to the situation at hand, we get 

ow, picking {3 = ~(a), we see that 

In(a) ~ (1+ ~)n + n(1+ _l_)n-l 0(1) 
I-'(a) ~(Cl) 1 A. 

Since lim ~(a) = 00, we fInally get that 
a--lO 

lim sup In(a) /{3 n(a) ~ l. 
a--lO 

The lower bound is easier to obtain . 

LEMMA 2. (Lower bound) 

. 
Proof. Making crude estimates, we see that 

og-
a2 



Now fix £ > 0 and put 

j _____ n_:_n_-_l_~ ____ _ 

o 1 + a f e au+ A.U212 du 
o 

1 ...... E A [ j
Yi 

~loga2 . 

If we pick ~ = ~£Ca), we get 

Since lim aO~£ Ca) = 0 for any 0> 0, we see that 
a-lO 

1 ~ lim inf 
a-lO 

= ----I ----,,=- lim in f I ~ ( a) 
(1 - E)n.12 a-lO pnCa) 

Since E is arbitrary, this complete the proof of Lemma 2. 

It follows from Lemmas 1 and 2 that 

lim 
a-lO 

= 1. 

Since PCa) i lowly varying at zero, the Tau berian theorem implies that 

(see, e. g. [2] Vol. 2, p. 445) 

This completes the proof of our main rheorem. 



3. ASYMPTOTIC UMITING DISTRIBUTION 

Here we give a derivation (with some mall gap) of the actual limiting 

asymptotic of the time to unravel. The formula we are after i given in 

(1. 5). 

Fix s~ 0 and put 

Then 

{
Po {t, s> t} = P {crt < s} 

pet) = 

00 00 

f e-atp(t)dt = fe -atP{ts> t}dt 
o 

= s 

t~ 0 
t< O. 

1 + ex f e Cl1l+ Au 212du . 
o 

(3. 1) 

Equation (3 .1) holds not only for real numbers (Q 0, but also for complex 

numbers for which Re(a)~ O. In fact, we can make the substitution 

~ = ia to rewrite (3.1) as a Fourier transform of p. Inverting the Fourier 

transform we get 

p (t) = 

s 

Je zu 
100 

1 JZI 0 d -- e -------- z. 
21t i _ ioo S 

1 + zJ e Zu + )..u
212du 

o 

The integral may be written as a sum of the re idue extracted as the 
contour along the .imaginary axis is shifted left. The main contribution is at 

the fir t zero of the denominator: 



s 

I (z) = 1 + z J e ZU+ /..u
2
/2du. 

o 

Letting a denote this principal zero of f, we see immediately that 

s 

J e au+ Au
2
/2du = 

o 

U sing (3.2), it is easy to see that 

The re idue at a IS 

eaJ. 

1 
a 

Res(a) = 
at' (a ) . 

(3.2) 

(3.3) 

Our goal is to derive the asymptotic formula (l .5) . Hence, we will 
eventually let s be a function of t that tends to infmiry as t tends to 
infInity. Once s become a function of t. the principal zero a al 0 

becomes a function of t. We should think of t a very large, and s as 
roughly (A.- 110gr2A.)v,; maller than t but larger than 'those variables not 
running off to infinity. 

With these relative sizes in mind; ~ let's investigate the principal zero Q . 

Our first observation is that the principal zero is a negative reaL To see 
this, note that from the definition of I (z) and formu la (3. 1) we have 

I(z) = 
1 

Ee - Z'Cs . 

Hen ce for any z = x + iy lying in the negative half plane, but not on the 
real axis 

If( z) 1= 1 1 
f(x) . > = lEe - z'ts I Ee - x'ts 

Therefore, for z to be a root, I(x) must be strictly negative. Since 
1(0) = 1 it follow that the pr incipal root must lie on the negative real 
aXIS. 



The next order of business is to decide whether a approaches zero or 
infinity as t tends to infinity and then to get a good approximation. We 
have already noted that f (0) = 1. In addition, 

s 

f' (0) = J eA.
U2 /2

du. 
o 

Recalling that s will be tending to infinity, we see that the slope of fat 

zero "is very large. Hence, we would expect a to be close to zero and 
approaching zero as t tends to infinity. Consequently, we can use one 
step of Newton's method to get a reasonable estimate for a: 

a:::: - _1_:::: _ "Ase - "A.s
2
12. 

f'(O) 
(3.4) 

Using this approximation for a, we see that 

, 2 ~ _2 2 ~ _2 - ,,-<2/2 
af (a) :::: - 1 + "As e- M I - II.,) e :::: - 1. (3.5) 

Substituting (3.4) and-(3.5) into (3.3), we get 

(3.6) 

. -6 
Eq uating the right side of (3.6) t_o e-. e we see that s must satisfy 

AS2/2 = 8 + logAst 

It is mote convenient to rewrite this in the following equivalent manner: 

From the definition of "', we see that 

Since 26 is small potatoes compared to log "At 2 , We make the following 
approximation: 

As2:::: \jI(x) + ",' (x)26, 



where x::: Al2. It follows from the definition of '" that 

",'(x)::: l.!'(x) 
\jf{x)- 1 

Since Vex) tends to infinity as x doe, it follows that, for large x, 

",' (x):::: 1. 

Hence, 

and so, 

This co pletes the derivation of (1. 5). 

ate that (1. 5) is consistent with the moment theorem of Section 1. 

This follows from the fact that \jf{x) - x. 

We end this section by reiterating that there are certain gaps that must 
be fillect before formula (1. 5) for the asymptotic limiting di tribution is 
rigorous. The most important gap is that the principal residue does indeed 
dominate. The other gaps are mostly that the various approximations are 
sufficiently precise. We leave it to future research to fill in these details. 

4. LOOSE ENDS 

We have .assumed that unraveling starts from each end at s::: O. But 
111 the real model for DNA, this is not the case. However, we show here 
that the probability that an endpoint is not unraveled by time T::: EaL is 
asymptotically negligible 0 that there is no change needed in the formula 
given above for the limiting moments or the limiting distribution of crL in 

the real model. 

A schematic of the real model is shown 111 Figure 3. The left endpoint 
is not unraveled at time T if and only if there are no stars in the triangle 
bounded by the line connecting the point T on the vertical axis with the 
point TI2 on the horizontal axis. The probability of this event i 



1t = P(left endpoin t i not unra eled at time T) = e- AT2 /4 

Now, if we substitute the asymptotic formula for EcrL in for T, we get 

1 
1t= 

(L 2A)1I4 . 

Clearly, 1t tends to zero as L tends to infinity. The r ight endpoint 

behaves the same. 

It is also interesting to determine the expected number of unraveling 

segments at each time s. I t is easiest to work with the sheared model 

shown in Figure 2. The number Ns of unraveling segments at time s is 

eq ual to the number of down crossin gs of the level s if XL is below s 
and it is one more than that if XL is above s. Since we don't really mind 

being off by one, let's simply try to fmd the expected number of 
downcrossings of the level s by the "time" L. 

s 
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* * 
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Figure 3. The Real Model 

A downcrossing occurs within a small increment of "time" dy if and 
on Iy if there is a Poi son point in the infinitesimal rectangle dyx [0, s], 

which ha probability ASciy, and there are no Poisson points in the triangle 



bounded by the horizontal axis, the vertical line at "time" y and the line 
connecting (y - s, 0) to (y,s). The probability that there are no points in 
this triaD gle is e - "A.s

2
12. Hence, 

L 

ENs = f e- "A.s
212

'Asdy 
s 

T his expressIOn for the expected number of unraveling segments has its 
maximum at s* = 'A - v. and at this time the expected number of segmen ts 
is 

Finally, if we relax the assumption that unraveling occurs at rate one 
half and instead allow it to occur at rate v/2 then the only change that 
must be made is to replace 'A with 'Av and L with Llv. After doing 
this, we note that all units work out correctly. That is all the asymptotic 
expressions for aL do indeed have units of seconds. In particular, note 
that the expression appearing in the logarithms, L 2 'A/v, is a dimensionless 
quanti ty. 
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