Numerical Optimization Applied to Space-Related Problems

Robert J. Vanderbei

2015 March 8

AMS Eastern Sectional Meeting
Georgetown University
Washington DC

http://www.princeton.edu/~rvdb
The Plan...

New Solutions to the n-Body Problem

Planet Finding via High-Contrast Imaging

Fast-Fourier Optimization — Sparsifying the Constraint Matrix
The Plan...

New Solutions to the n-Body Problem

Planet Finding via High-Contrast Imaging

Fast-Fourier Optimization — Sparsifying the Constraint Matrix
Lagrange Style Orbits

Click anywhere below for WebGL simulation
Figure Eight 3,4,5 Bodies
Exotic But Unstable
New Ones
Least Action Principle

Given: \(n \) bodies.

Let:

- \(m_j \) denote the mass and
- \(z_j(t) = \begin{bmatrix} x_j(t) \\ y_j(t) \end{bmatrix} \) denote the position in \(\mathbb{R}^2 \) (or \(\mathbb{R}^3 \)) of body \(j \) at time \(t \).

Action Functional:

\[
A = \int_0^{2\pi} \left(\sum_j \frac{1}{2} m_j \|\dot{z}_j\|^2 + \sum_{j,k:j<k} \frac{Gm_j m_k}{\|z_j - z_k\|} \right) dt.
\]

Theorem: Any critical point of the action functional is a solution of the \(n \)-body problem.
Equation of Motion

First Variation:

$$\delta A = \int_0^{2\pi} \left(\sum_j m_j \dot{z}_j^T \dot{\delta z}_j - \sum_{j,k: k < j} G m_j m_k \frac{(z_j - z_k)^T (\delta z_j - \delta z_k)}{\|z_j - z_k\|^3} \right) dt$$

$$= - \int_0^{2\pi} \sum_j \left(m_j \ddot{z}_j + \sum_{k: k \neq j} G m_j m_k \frac{z_j - z_k}{\|z_j - z_k\|^3} \right)^T \delta z_j dt$$

Setting first variation to zero, we get:

$$m_j \ddot{z}_j = - \sum_{k: k \neq j} G m_j m_k \frac{z_j - z_k}{\|z_j - z_k\|^3}, \quad j = 1, 2, \ldots, n.$$

Note: If $m_j = 0$ for some j, then the first order optimality condition reduces to $0 = 0$, which is \textbf{not} the equation of motion for a massless body.
param n := 4; # number of masses
param T := 40000; # number of terms in numerical approx to integral

param G := 1;
param period := 2*pi/omega0; # temporal length of the orbit segment
param dt := period / T;
set Time circular = setof {j in 0..T-1} j*dt;

var x {j in 1..n, t in Time} >= -5, <= 5;
var y {j in 1..n, t in Time} >= -5, <= 5;

var xdot {j in 1..n, t in Time} = (x[j,next(t)]-x[j,t])/dt;
var ydot {j in 1..n, t in Time} = (y[j,next(t)]-y[j,t])/dt;

var K {t in Time}
 = 0.5 * sum {j in 1..n} (xdot[j,t]^2 + ydot[j,t]^2);

var P {t in Time}
 = - sum {j in 1..n, k in 1..n: k<j} 1/sqrt((x[j,t]-x[k,t])^2 + (y[j,t]-y[k,t])^2);

minimize Action: sum {t in Time} (K[t] - P[t])*dt;
param omega0 := 1./2;
param omega1 := 1./1;
param phi_p := -pi/2;
param phi_m := pi/2;
param r0 := (G/(2*omega0^2))^(1./3.);
param r1 := (G/(4*omega1^2))^(1./3.);

let {t in Time} x[0,t] := r0*cos(omega0*t) + r1*sin(-omega1*t + phi_p);
let {t in Time} y[0,t] := r0*sin(omega0*t) + r1*cos(-omega1*t + phi_p);

let {t in Time} x[1,t] := r0*cos(omega0*t) - r1*sin(-omega1*t + phi_p);
let {t in Time} y[1,t] := r0*sin(omega0*t) - r1*cos(-omega1*t + phi_p);

let {t in Time} x[2,t] := -r0*cos(omega0*t) + r1*cos(-omega1*t + phi_m);
let {t in Time} y[2,t] := -r0*sin(omega0*t) + r1*sin(-omega1*t + phi_m);

let {t in Time} x[3,t] := -r0*cos(omega0*t) - r1*cos(-omega1*t + phi_m);
let {t in Time} y[3,t] := -r0*sin(omega0*t) - r1*sin(-omega1*t + phi_m);
solve;
Limitations of the Model

- The physical problem is *infinite dimensional*—a continuum.

- Such problems can be really tough. Let’s call it the *curse of the continuum*.

- *Discretize* the integral to a finite sum.

- Solutions can occur at *local maxima* and at *saddle points*. Looking only for *local minima*, we miss these others.
Alternate Approach: Solve Equations of Motion

Minimizing the action functional is an unconstrained optimization problem...

\[
\int_0^{2\pi} \left(\sum_j \frac{1}{2} m_j \| \dot{z}_j \|^2 + \sum_{j,k:k<j} \frac{G m_j m_k}{\| z_j - z_k \|^3} \right) dt,
\]
subject to no constraints,

Instead, we could simply look for trajectories that satisfy Newton’s laws:

\[
\text{minimize} \quad 0,
\]
subject to \(m_j \ddot{z}_j = - \sum_{k:k\neq j} G m_j m_k \frac{z_j - z_k}{\| z_j - z_k \|^3}, \quad j = 1, 2, \ldots, n, \ 0 \leq t \leq 2\pi. \)

(Note: the \(z_j \)'s are vectors in space so this is 2 (or 3) times \(n \) times a continuum.)
AMPL Model for the Equations of Motion

var x {i in 1..n, t in Time} >= -5, <= 5;
var y {i in 1..n, t in Time} >= -5, <= 5;

var xdot {i in 1..n, t in Time} = (x[i,next(t)]-x[i,t])/dt;
var ydot {i in 1..n, t in Time} = (y[i,next(t)]-y[i,t])/dt;

var xdot2 {i in 1..n, t in Time} = (xdot[i,t]-xdot[i,prev(t)])/dt;
var ydot2 {i in 1..n, t in Time} = (ydot[i,t]-ydot[i,prev(t)])/dt;

minimize zero: 0;

subject to F_equals_ma_x {i in 1..n, t in Time}:
 xdot2[i,t]
 = sum {j in 1..n: j != i}
 (x[j,t]-x[i,t]) / ((x[j,t]-x[i,t])^2+(y[j,t]-y[i,t])^2)^(3/2);

subject to F_equals_ma_y {i in 1..n, t in Time}:
 ydot2[i,t]
 = sum {j in 1..n: j != i}
 (y[j,t]-y[i,t]) / ((x[j,t]-x[i,t])^2+(y[j,t]-y[i,t])^2)^(3/2);
New Solution Via Equations of Motion

A Mini/Month/Year Design Action Minimization Equations of Motion

NOTE: Action minimization found an orbit. But, it is immediately unstable as the middle figure shows.
Making Stability an Objective

To the *Equations of Motion* model, add these perturbation parameters:

```plaintext
set Tim ordered = setof {j in -1..T} j*dt;
param dx := 1e-3;
param dy := 1e-3;
param dvx := 1e-3;
param dvy := 1e-3;
```

These new variables and objective function:

```plaintext
# perturbed trajectories
var xp {l in 1..n, k in 1..4, i in 1..n, t in Tim};
var yp {l in 1..n, k in 1..4, i in 1..n, t in Tim};
var xp_dot {l in 1..n, k in 1..4, i in 1..n, t in Tim: t != last(Tim)}
    = (xp[l,k,i,next(t)]-xp[l,k,i,t])/dt;
var yp_dot {l in 1..n, k in 1..4, i in 1..n, t in Tim: t != last(Tim)}
    = (yp[l,k,i,next(t)]-yp[l,k,i,t])/dt;
var xp_dot2 {l in 1..n, k in 1..4, i in 1..n, t in Tim: t in Time}
    = (xp_dot[l,k,i,t]-xp_dot[l,k,i,prev(t)])/dt;
var yp_dot2 {l in 1..n, k in 1..4, i in 1..n, t in Tim: t in Time}
    = (yp_dot[l,k,i,t]-yp_dot[l,k,i,prev(t)])/dt;
```

And...
Add this objective:

\[
\text{minimize instability:} \\
\quad \text{sum } \{ l \text{ in } 1..n, j \text{ in } 1..n: l \neq j \} \ (xp[l,1,j,\text{last}(\text{Time})] - x[j,\text{last}(\text{Time})])^2 \\
+ \text{sum } \{ j \text{ in } 1..n \} \ (xp[j,1,j,\text{last}(\text{Time})] - dx - x[j,\text{last}(\text{Time})])^2 \\
+ \text{sum } \{ l \text{ in } 1..n, j \text{ in } 1..n: l \neq j \} \ (yp[l,2,j,\text{last}(\text{Time})] - y[j,\text{last}(\text{Time})])^2 \\
+ \text{sum } \{ j \text{ in } 1..n \} \ (yp[j,2,j,\text{last}(\text{Time})] - dy - y[j,\text{last}(\text{Time})])^2 \\
+ \text{sum } \{ l \text{ in } 1..n, j \text{ in } 1..n: l \neq j \} \ (xp_\dot[l,3,j,\text{last}(\text{Time})] - x_\dot[j,\text{last}(\text{Time})])^2 \\
+ \text{sum } \{ j \text{ in } 1..n \} \ (xp_\dot[j,3,j,\text{last}(\text{Time})] - dvx - x_\dot[j,\text{last}(\text{Time})])^2 \\
+ \text{sum } \{ l \text{ in } 1..n, j \text{ in } 1..n: l \neq j \} \ (yp_\dot[l,4,j,\text{last}(\text{Time})] - y_\dot[j,\text{last}(\text{Time})])^2 \\
+ \text{sum } \{ j \text{ in } 1..n \} \ (yp_\dot[j,4,j,\text{last}(\text{Time})] - dvy - y_\dot[j,\text{last}(\text{Time})])^2
\]

And these constraints defining the perturbed trajectories:

subject to F_eq_ma_x_pert \{ l \text{ in } 1..n, k \text{ in } 1..4, i \text{ in } 1..n, t \text{ in } \text{Time} \}:
\[
\text{xp}_\dot2[l,k,i,t] \\
= \text{sum } \{ j \text{ in } 1..n: j \neq i \} \ (xp[l,k,j,t]-xp[l,k,i,t]) / \\
((xp[l,k,j,t]-xp[l,k,i,t])^2+(yp[l,k,j,t]-yp[l,k,i,t])^2)^{3/2};
\]

subject to F_eq_ma_y_pert \{ l \text{ in } 1..n, k \text{ in } 1..4, i \text{ in } 1..n, t \text{ in } \text{Time} \}:
\[
\text{yp}_\dot2[l,k,i,t] \\
= \text{sum } \{ j \text{ in } 1..n: j \neq i \} \ (yp[l,k,j,t]-yp[l,k,i,t]) / \\
((xp[l,k,j,t]-xp[l,k,i,t])^2+(yp[l,k,j,t]-yp[l,k,i,t])^2)^{3/2};
\]

subject to x_pert_init \{ i \text{ in } 1..n \}: \ xp[i,1,i,0] = x[i,0] + dx;

subject to y_pert_init \{ i \text{ in } 1..n \}: \ yp[i,2,i,0] = y[i,0] + dy;

subject to xdot_pert_init \{ i \text{ in } 1..n \}: \ xp_\dot[i,3,i,0] = x_\dot[i,0] + dvx;

subject to ydot_pert_init \{ i \text{ in } 1..n \}: \ yp_\dot[i,4,i,0] = y_\dot[i,0] + dvy;
<table>
<thead>
<tr>
<th>Name</th>
<th>Obj. Func. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ducati3</td>
<td>1.4e-5</td>
</tr>
<tr>
<td>Star of David</td>
<td>1.6e-5</td>
</tr>
<tr>
<td>1Month1Year</td>
<td>1.4e-5</td>
</tr>
<tr>
<td>1Mini1Month1Year</td>
<td>5.5e-5</td>
</tr>
<tr>
<td>1Mini1Month1Year2</td>
<td>2.5e-1</td>
</tr>
<tr>
<td>1Mini1Month1Year(c)</td>
<td>4.2e-2</td>
</tr>
<tr>
<td>Five Point Star</td>
<td>8.9e-6</td>
</tr>
</tbody>
</table>
The Plan...

New Solutions to the n-Body Problem

Planet Finding via High-Contrast Imaging

Fast-Fourier Optimization — Sparsifying the Constraint Matrix
July 2014

National Geographic

Is anybody out there?

Life beyond Earth

African Agriculture Goes Global

The Walk Around the World Continues

The Goliath Grouper

Exploring China’s Caves
A key problem in *high-contrast imaging* is to maximize light through an apodized circular aperture subject to the constraint that virtually no light reaches a given dark zone D in the image:

\[
\begin{align*}
\text{maximize} & \quad \int \int f(x, y) \, dx\, dy \quad \left(= \hat{f}(0, 0) \right) \\
\text{subject to} & \quad \left| \hat{f}(\xi, \eta) \right| \leq \varepsilon \hat{f}(0, 0), \quad (\xi, \eta) \in D, \\
& \quad f(x, y) = 0, \quad x^2 + y^2 > 1, \\
& \quad 0 \leq f(x, y) \leq 1, \quad \text{for all } x, y.
\end{align*}
\]

Here, ε is a small positive constant (on the order of 10^{-5}).

In general, the Fourier transform \hat{f} is complex valued.

As formulated, this optimization problem has a *linear objective* function and both *linear* and *second-order cone* constraints.

Hence, a discretized version can be solved (to a *global optimum*).
EE: The Fourier transform is well understood. The best algorithm for computing it is the fast Fourier transform. Excellent codes are available, such as fftw. Just call one of these state-of-the-art codes. There is nothing new to be done here.

OR: The range of problems that fit the Fourier Optimization paradigm is very limited. There might be some new research, but its applications are few.
EE: The Fourier transform is well understood. The best algorithm for computing it is the \textit{fast Fourier transform}. Excellent codes are available, such as \texttt{fftw}. Just call one of these state-of-the-art codes. There is nothing new to be done here.

Rebuttal: Efficient algorithms for linear programming require more than an oracle that computes constraint function values. They also need gradients. To work with the full Jacobian matrix of the Fourier transform is to lose \textit{all} of the computational efficiency of the fast Fourier transform.

PS. The fast Fourier transform is not an algorithm—it is a concept that leads to algorithms.

OR: The range of problems that fit the \textit{Fourier Optimization} paradigm is very limited. There might be some new research, but its applications are few.
EE: The Fourier transform is well understood. The best algorithm for computing it is the fast Fourier transform. Excellent codes are available, such as fftw. Just call one of these state-of-the-art codes. There is nothing new to be done here.

Rebuttal: Efficient algorithms for linear programming require more than an oracle that computes constraint function values. They also need gradients. To work with the full Jacobian matrix of the Fourier transform is to lose all of the computational efficiency of the fast Fourier transform.

PS. The fast Fourier transform is not an algorithm—it is a concept that leads to algorithms.

OR: The range of problems that fit the Fourier Optimization paradigm is very limited. There might be some new research, but its applications are few.

Rebuttal: Almost every problem in electrical engineering involves Fourier transforms. The few problem areas I’ve worked on are just the tip of an enormous iceberg.
Exploiting Symmetry

Assuming that the apodization can be symmetric with respect to reflection about both axes, i.e., \(f(x, y) = f(-x, y) = f(x, -y) = f(-x, -y) \), the Fourier transform can be written as

\[
\hat{f}(\xi, \eta) = 4 \int_0^1 \int_0^1 \cos(2\pi x \xi) \cos(2\pi y \eta) f(x, y) dx dy.
\]

In this case, the Fourier transform is real and so the second-order-cone constraints can be replaced with a pair of inequalities,

\[
-\varepsilon \hat{f}(0, 0) \leq \hat{f}(\xi, \eta) \leq \varepsilon \hat{f}(0, 0), \quad (\xi, \eta) \in D,
\]

making the problem an \textit{infinite dimensional linear programming problem}.

\textit{Curse of Dimensionality: Number of variables/constraints} = \infty
Exploiting Symmetry

Assuming that the apodization can be symmetric with respect to reflection about both axes, i.e., \(f(x, y) = f(-x, y) = f(x, -y) = f(-x, -y) \), the Fourier transform can be written as

\[
\hat{f}(\xi, \eta) = 4 \int_0^1 \int_0^1 \cos(2\pi x\xi) \cos(2\pi y\eta) f(x, y) \, dx \, dy.
\]

In this case, the Fourier transform is real and so the second-order cone constraints can be replaced with a pair of inequalities,

\[-\varepsilon \hat{f}(0, 0) \leq \hat{f}(\xi, \eta) \leq \varepsilon \hat{f}(0, 0), \quad (\xi, \eta) \in \mathcal{D},\]

making the problem an *infinite dimensional linear programming problem*.

Curse of Dimensionality: No! It’s because \(d = 2 \) and \(\infty^2 \gg \infty^1 \).
Consider a two-dimensional Fourier transform

\[\hat{f}(\xi, \eta) = 4 \int_0^1 \int_0^1 \cos(2\pi x \xi) \cos(2\pi y \eta) f(x, y) \, dx \, dy. \]

Its discrete approximation can be computed as

\[\hat{f}_{j_1,j_2} = 4 \sum_{k_2=1}^{n} \sum_{k_1=1}^{n} \cos(2\pi x_{k_1} \xi_{j_1}) \cos(2\pi y_{k_2} \eta_{j_2}) f_{k_1,k_2} \Delta x \Delta y, \quad 1 \leq j_1, j_2 \leq m, \]

where

\[x_k = (k - 1/2) \Delta x, \quad 1 \leq k \leq n, \]
\[y_k = (k - 1/2) \Delta y, \quad 1 \leq k \leq n, \]
\[\xi_j = j \Delta \xi, \quad 1 \leq j \leq m, \]
\[\eta_j = j \Delta \eta, \quad 1 \leq j \leq m, \]
\[f_{k_1,k_2} = f(x_{k_1}, y_{k_2}), \quad 1 \leq k_1, k_2 \leq n, \]
\[\hat{f}_{j_1,j_2} \approx \hat{f}(\xi_{j_1}, \eta_{j_2}), \quad 1 \leq j_1, j_2 \leq m. \]

Complexity: \(m^2 n^2. \)
A Trivial (but Smart!) Idea

The obvious brute force calculation requires $m^2 n^2$ operations.

However, we can “factor” the double sum into a nested pair of sums.

Introducing new variables to represent the inner sum, we get:

\[
g_{j_1, k_2} = 2 \sum_{k_1=1}^{n} \cos(2\pi x_{k_1} \xi_{j_1}) f_{k_1, k_2} \Delta x, \quad 1 \leq j_1 \leq m, \quad 1 \leq k_2 \leq n,
\]

\[
\hat{f}_{j_1, j_2} = 2 \sum_{k_2=1}^{n} \cos(2\pi y_{k_2} \eta_{j_2}) g_{j_1, k_2} \Delta y, \quad 1 \leq j_1, j_2 \leq m,
\]

Formulated this way, the calculation requires only $mn^2 + m^2 n$ operations.

This trick is exactly the same idea that underlies the fast Fourier Transform.
Brute Force vs Clever Approach

On the following page two formulations of this problem in AMPL are shown.

On the left is the version expressed in the straightforward one-step manner.

On the right is the AMPL model for the same problem but with the Fourier transform expressed as a pair of transforms—let’s call this the two-step process.

The dark zone \mathcal{D} is a pair of sectors of an annulus with inner radius 4 and outer radius 20.

Except for different discretizations, the two models produce the same result.
Two AMPL Models

```
param rho0 := 4;  param rho1 := 20;
param m := 35;  # discretization parameter
param n := 150;  # discretization parameter
param dx := 1/(2*n);  param dy := dx;

set Xs := setof {j in 0..n-0.5 by 1} j/(2*n);
set Ys := Xs;
set Pupil :=
  setof {x in Xs, y in Ys: x^2+y^2<0.25} (x,y);
set Xis := setof {j in 0..m} j*rho1/m;
set Etas := Xis;
set DarkHole := setof {xi in Xis, eta in Etas:
  xi^2+eta^2=rho0^2 &&
  xi^2+eta^2<=rho1^2 &&
  eta <= xi } (xi,eta);

var f {(x,y) in Pupil} >= 0, <= 1;

var fhat {xi in Xis, eta in Etas};

maximize area: sum {(x,y) in Pupil} f[x,y]*dx*dy;

subject to fhat_def {xi in Xis, eta in Etas}:
  f[x,y]*cos(2*pi*x*xi)
  *cos(2*pi*y*eta)*dx*dy;

subject to sidelobe_pos {(xi,eta) in DarkHole}:
  fhat[xi,eta] <= 10^(-5)*fhat[0,0];
subject to sidelobe_neg {(xi,eta) in DarkHole}:
  -10^(-5)*fhat[0,0] <= fhat[xi,eta];

solve;
```

```
param rho0 := 4;  param rho1 := 20;
param m := 35;  # discretization parameter
param n := 1000;  # discretization parameter
param dx := 1/(2*n);  param dy := dx;

set Xs := setof {j in 0..n-0.5 by 1} j/(2*n);
set Ys := Xs;
set Pupil :=
  setof {x in Xs, y in Ys: x^2+y^2<0.25} (x,y);
set Xis := setof {j in 0..m} j*rho1/m;
set Etas := Xis;
set DarkHole := setof {xi in Xis, eta in Etas:
  xi^2+eta^2=rho0^2 &&
  xi^2+eta^2<=rho1^2 &&
  eta <= xi } (xi,eta);

var f {(x,y) in Pupil} >= 0, <= 1;

var g {xi in Xis, y in Ys};
var fhat {xi in Xis, eta in Etas};

maximize area: sum {(x,y) in Pupil} f[x,y]*dx*dy;

subject to g_def {xi in Xis, y in Ys}:
  g[xi,y] = 2*sum {x in Xs: (x,y) in Pupil} f[x,y]*cos(2*pi*x*xi)*dx;
subject to fhat_def {xi in Xis, eta in Etas}:
  f[xi,eta] = 2*sum {y in Ys} g[xi,y]*cos(2*pi*y*eta)*dy;

subject to sidelobe_pos {(xi,eta) in DarkHole}:
  fhat[xi,eta] <= 10^(-5)*fhat[0,0];
subject to sidelobe_neg {(xi,eta) in DarkHole}:
  -10^(-5)*fhat[0,0] <= fhat[xi,eta];

solve;
```
Left. The optimal apodization found by either of the models shown on previous slide.

Center. Plot of the star’s image (using a linear stretch).

Right. Logarithmic plot of the star’s image (black = 10^{-10}).

Note:
- The “apodization” turns out to be purely opaque and transparent (i.e., a mask).
Brute force with $n = 150$

Two-step with $n = 1000$
Comparison between a few sizes of the one-step and two-step models.

Problem-specific stats.

<table>
<thead>
<tr>
<th>Model</th>
<th>n</th>
<th>m</th>
<th>constraints</th>
<th>variables</th>
<th>nonzeros</th>
<th>arith. ops.</th>
</tr>
</thead>
<tbody>
<tr>
<td>One step</td>
<td>150</td>
<td>35</td>
<td>976</td>
<td>17,672</td>
<td>17,247,872</td>
<td>17,196,541,336</td>
</tr>
<tr>
<td>One step</td>
<td>250</td>
<td>35</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Two step</td>
<td>150</td>
<td>35</td>
<td>7,672</td>
<td>24,368</td>
<td>839,240</td>
<td>3,972,909,664</td>
</tr>
<tr>
<td>Two step</td>
<td>500</td>
<td>35</td>
<td>20,272</td>
<td>215,660</td>
<td>7,738,352</td>
<td>11,854,305,444</td>
</tr>
<tr>
<td>Two step</td>
<td>1000</td>
<td>35</td>
<td>38,272</td>
<td>822,715</td>
<td>29,610,332</td>
<td>23,532,807,719</td>
</tr>
</tbody>
</table>

Hardware/Solution-specific performance comparison data.

<table>
<thead>
<tr>
<th>Model</th>
<th>n</th>
<th>m</th>
<th>iterations</th>
<th>primal objective</th>
<th>dual objective</th>
<th>cpu time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One step</td>
<td>150</td>
<td>35</td>
<td>54</td>
<td>0.05374227247</td>
<td>0.05374228041</td>
<td>1380</td>
</tr>
<tr>
<td>One step</td>
<td>250</td>
<td>35</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Two step</td>
<td>150</td>
<td>35</td>
<td>185</td>
<td>0.05374233071</td>
<td>0.05374236091</td>
<td>1064</td>
</tr>
<tr>
<td>Two step</td>
<td>500</td>
<td>35</td>
<td>187</td>
<td>0.05395622255</td>
<td>0.05395623990</td>
<td>4922</td>
</tr>
<tr>
<td>Two step</td>
<td>1000</td>
<td>35</td>
<td>444</td>
<td>0.05394366337</td>
<td>0.05394369256</td>
<td>26060</td>
</tr>
</tbody>
</table>
Originally, five design concepts were proposed. Our shaped pupil concept (shown here) was selected. The high-contrast imaging system is being built. The satellite will launch sometime mid 2020’s.
The Plan...

New Solutions to the n-Body Problem

Planet Finding via High-Contrast Imaging

Fast-Fourier Optimization — Sparsifying the Constraint Matrix
2D Fourier Transform in Matrix Notation

Let

\[F := \begin{bmatrix} f_{k_1,k_2} \end{bmatrix}, \quad G := \begin{bmatrix} g_{j_1,k_2} \end{bmatrix}, \quad \hat{F} := \begin{bmatrix} \hat{f}_{j_1,j_2} \end{bmatrix}, \quad \text{and} \quad K := \begin{bmatrix} \kappa_{j_1,k_1} \end{bmatrix}, \]

where \(K \) denotes the \(m \times n \) Fourier kernel matrix whose elements are

\[\kappa_{j_1,k_1} = 2 \cos(2\pi x_{k_1} \xi_{j_1}) \Delta x. \]

The two-dimensional Fourier transform \(\hat{F} \) can be written simply as

\[\hat{F} = KFK^T \]

and the computation of the transform in two steps is just the statement that the two matrix multiplications can (and should!) be done separately:

\[G = KF \]
\[\hat{F} = GK^T. \]
Linear programming algorithms solve problems in this form:

\[
\text{maximize } \quad c^T x \\
\text{subject to } \quad Ax = b, \quad x \geq 0,
\]

where \(b \) and \(c \) are given vectors and \(A \) is a given matrix.

Of course, \(x \) is a vector.

Optimization modeling languages, such as AMPL, convert a problem from its “natural” formulation to this matrix/vector paradigm and then hands it off to a solver.

Let’s take a look at this conversion...
Let \(f_j, g_j, \) and \(\hat{f}_j \) denote the column vectors of matrices \(F, G, \) and \(\hat{F} \):

\[
F = \begin{bmatrix} f_1 & \cdots & f_n \end{bmatrix}, \quad G = \begin{bmatrix} g_1 & \cdots & g_n \end{bmatrix}, \quad \hat{F} = \begin{bmatrix} \hat{f}_1 & \cdots & \hat{f}_m \end{bmatrix}.
\]

We can list the elements of \(F, G \) and \(\hat{F} \) in column vectors:

\[
\text{vec}(F) = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \quad \text{vec}(G) = \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix}, \quad \text{vec}(\hat{F}) = \begin{bmatrix} \hat{f}_1 \\ \vdots \\ \hat{f}_m \end{bmatrix}.
\]

It is straightforward to check that

\[
\text{vec}(G) = \begin{bmatrix} K \\ \vdots \\ K \end{bmatrix} \text{vec}(F)
\]

and that

\[
\text{vec}(\hat{F}) = \begin{bmatrix} \kappa_{1,1} I & \cdots & \kappa_{1,n} I \\ \vdots & \ddots & \vdots \\ \kappa_{m,1} I & \cdots & \kappa_{m,n} I \end{bmatrix} \text{vec}(G).
\]
One-Step Method:

\[
\begin{bmatrix}
\kappa_{1,1}K & \cdots & \kappa_{1,n}K & -I \\
\vdots & & \vdots & \vdots \\
\kappa_{m,1}K & \cdots & \kappa_{m,n}K & -I \\
\vdots & & \vdots & \vdots \\
\kappa_{m,1}I & \cdots & \kappa_{m,n}I & -I
\end{bmatrix}
\begin{bmatrix}
f_1 \\
f_n \\
\hat{f}_1 \\
\vdots \\
\hat{f}_m
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

The big left block is a \textit{dense} $m^2 \times n^2$ matrix.

Two-Step Method:

\[
\begin{bmatrix}
K & \cdots & -I \\
\vdots & & \vdots \\
K & \cdots & -I \\
\kappa_{1,1}I & \cdots & \kappa_{1,n}I & -I \\
\vdots & & \vdots & \vdots \\
\kappa_{m,1}I & \cdots & \kappa_{m,n}I & -I \\
\vdots & & \vdots & \vdots \\
\kappa_{m,1}I & \cdots & \kappa_{m,n}I & -I
\end{bmatrix}
\begin{bmatrix}
f_1 \\
f_n \\
\hat{f}_1 \\
\vdots \\
\hat{f}_m
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

The big upper-left block is a \textit{sparse} block-diagonal $mn \times n^2$ matrix with mn^2 nonzeros. The middle block is an $m \times n$ matrix of sub-blocks that are each $m \times m$ diagonal matrices. Hence, it is very \textit{sparse}, containing only m^2n nonzeros.
Thank You!