Space Mission Concepts
 Tò Image Earth-Like Planets In Habitable Zones

Robert J. Vanderbei
2016 February 26
$8^{\text {th }}$. Annual Research Symposium
Drexel University
http://www.princeton.edu/~rvdb

Are We Alone?

What Are The Odds?

Indirect Detection Methods

A few thousand planets found so far

Wobble Methods

Radial Velocity.

For edge-on systems.
Measure periodic doppler shift.

Astrometry.

Best for face-on systems.
Measure circular wobble against background stars.

First Discovery: 51 Pegasi b

- Mayor and Queloz (1995)
- Mag. 5.5 main sequence star
- Detected by radial velocity method
- Velocity difference: $70 \mathrm{~m} / \mathrm{s}=160 \mathrm{mph}$
- Period: 4.2 days
- Separation: 0.05 AU
- Angular separation: 0.0035 arcseconds
- Mass: > $0.47 \mathrm{M}_{\mathrm{J}}$

- Hot Jupiter

Transit Method

- HD209458b confirmed both via RV and transit.
- Period: 3.5 days
- Separation: 0.045 AU (0.001 arcsecs)
- Radius: $1.3 R_{\mathrm{J}}$
- Intensity Dip: $\sim 1.7 \%$
- Venus Dip = 0.01\%, Jupiter Dip: 1%
- Kepler and Corot

NASA's Kepler Mission

■EXOPLANETS COMPARED

PLANETS ARE SHOWN to scale in silhouette against their stars as if seen in transit. The sun and its planets. Pluto, and some moons are shown for comparison. We can discover the sizes of extrasolar planets by noting the fraction of their star's light they block if they transit in front of it. Most planets discovered to date are very close to their stars and hence too hot to allow liquid water on their surface. Planet HD 20945 sb is water on their surface. Planet HD 2094586 a hot gas-giant planet like Jupiter. Planct GJ 436 b is a hot Neptune-like planeIt's hot because it is so close to its star, even though that star is a cool M-dwarf. CoRoT-7b is the smallest transiting planet discovered so far-its diameter is only 1.7 times. greater than Earth's diameter. It is a rocky planet with a temperature of more than 1300 K .

Astrometry

SIMPlanetQuest

- Space Interferometry Mission (SIM)
- Wobbles as small as 0.000001 arcsecs (the thickness of a nickel viewed from the distance of the moon).
- Mission Cancelled
will be able to find:
Neptune-size planets around 2000 stars

Direct Detection

Fomalhaut (First Detection via Direct Imaging)
Mag. 1.2,
Distance 25 ly ,
Imaged by HST,
Period: 872 years,

Fomalhaut
 HST ACS/HRC

Dust ring

No data

Coronagraph
mask

- < Background Star
$100 \mathrm{AU} \quad 13^{\prime \prime}$

Why Earthlike in Habitable Zone is Hard

- Bright Star/Faint Planet: In visible light, our Sun is 10^{10} times brighter than Earth. That's 25 mags.
- Close to Each Other: A planet at 1 AU from a star at 10 parsecs can appear at most 0.1 arcseconds in separation.
- Far from Us: There are less than 100 Sun-like stars within 10 parsecs.

Can Ground-Based Telescopes Do It?

- Atmospheric distortion limits resolution to about 1 arcsec. Note: Resolution refers to equally bright objects. If one is much brighter than the other, then it is more difficult.
- Segmented optics limits contrast
- Current adaptive optics not good enough

No they can't (at least not yet)!

Can Hubble Do It?

No it can't!

The problem is diffraction
Would have to be $1000 \times$ bigger (in each dimension!)

Telescope

$6 \times$ Bigger Telescope

Telescope w/ Unobstructed Aperture

Doesn't Work! Requires an aperture measured in kilometers to mitigate diffraction effects.

Two Classes of Solutions

- Internal Coronagraphs
- External Occulters

Types of Coronagraphs (TPF-C)

- Hybrid Lyot
- Apodized Pupils
- Shaped Pupils
- Pupil Mapping (PIAA)
- Vector Vortex
- Phase Masks
- Visible Nuller
- Hybrids

Apodized Pupil Coronagraph

Diffraction Control via Tinting the Pupil

The abrupt edge of the telescope's "mirror" causes the bright diffraction rings.

Solution: Use tinted glass to ease the transition from transparent to opaque.

Some of the Math

The image-plane electric field $E()$ produced by an on-axis plane wave (i.e., starlight) and an apodized (i.e., tinted) aperture defined by an apodization function $A()$ is given by the Fourier transform:

$$
\begin{aligned}
E(\xi, \zeta) & =\iint_{\boldsymbol{O}} e^{2 \pi i(u \xi+y \zeta)} A(x, y) d y d x \\
& \vdots \\
E(\rho) & =2 \pi \int_{0}^{1 / 2} J_{0}(2 \pi r \rho) A(r) r d r,
\end{aligned}
$$

where J_{0} denotes the 0 -th order Bessel function of the first kind.
NOTE: The electric field depends linearly on the apodization function.
The intensity is the square of the electric field.
The unitless pupil-plane "length" r is given as a multiple of the aperture D.
The unitless image-plane "length" ρ is given as a multiple of focal-length times wavelength over aperture $(f \lambda / D)$ or, equivalently, as an angular measure on the sky, in which case it is a multiple of just λ / D. (Example: $\lambda=0.5 \mu \mathrm{~m}$ and $D=10 \mathrm{~m}$ implies $\lambda / D=10 \mathrm{mas}$.)

Find apodization function $A()$ that solves:

$$
\begin{array}{cll}
\text { maximize } & \int_{0}^{1 / 2} A(r) 2 \pi r d r & \\
\text { subject to } & -10^{-5} E(0) \leq E(\rho) \leq 10^{-5} E(0), & \rho_{\text {iwa }} \leq \rho \leq \rho_{\text {owa }} \\
& 0 \leq A(r) \leq 1, & 0 \leq r \leq 1 / 2 \\
& -50 \leq A^{\prime \prime}(r) \leq 50, & 0 \leq r \leq 1 / 2
\end{array}
$$

An infinite dimensional linear programming problem.

Mirror with Softened Edge

Mathematically Perfect...
But Unmanufacturable!

Shaped Pupil Coronagraph

Image plane (150 petals)

Still excellent, but still unmanufacturable.

Ripple3 Mask
Designed for an elliptical 4×8 meter primary.

$$
\rho_{\mathrm{iva}}=4
$$

Throughput $=30 \%$
Note: throughput measured relative to ellipse
11% central obstr.
Easy to make
Only a few rotations

What About Imperfect Optics?

So far, we have assumed perfect optics.
Manufacturing errors are inevitable. They could be partially corrected using deformable mirrors (DMs) and a wavefront sensing system.

Thermal changes, vibrations, and possibly other effects will necessitate a dynamic wavefront control system.

Can we correct wavefront errors enough to achieve 25 magnitudes of contrast?

Our TPF Optics Lab

Jeremy Kasdin tinkers with the laser.

More postcards from the edge...

Two Classes of Solutions

- Internal Coronagraphs
- External Occulters

Nature's Coronagraph

Use an external
occulter to
block the light.

Occulter-Simple Ray Optics Description

Inner Working Angle given by: $\quad \tan \theta=\frac{R}{z}$
For $\mathrm{D}=4 \mathrm{~m}, \mathrm{R}=3 \mathrm{~m}$, and $\mathrm{IWA}=75 \mathrm{mas}, \mathrm{z} \sim 10,000 \mathrm{~km}$

The fundamental size and separation for a starshade are LARGE.

Siméon Poisson/Francois Arago (1818)

Poisson didn't believe the wave theory of light. He pointed out that light falling on a circular object would have a bright spot at the center of its shadow.

Arago did the experiment.
Poisson was wrong.

Poisson's spot

A Fun Experiment

Plain External Occulter (Doesn’t Work!)

Circular Occulter

Simulated star/planet image
Shadow isn't dark enough

Shaped Occulter

Space-based Occulter (TPF-O)

Telescope Aperture: 4m, Occulter Diameter: 50m, Occulter Distance: 72, 000km

Starshade Stowage and Deployment

A Real Petal...

..And How It Furls

Me and My Petal

Which Space-Based Observatory Seems Easiest To Build...

Coronagraph. A four to eight meter off-axis telescope with built-in diffraction control scheme and active adaptive optics to maintain unprecedented wavefront quality ($1 / 10,000$-th wave) over the course of very long exposures (light throughput of the diffraction control system is only about 10%).

Occulter. A four meter diffraction limited telescope and a specially configured 50 meter tip-to-tip occulter "flying" $72,000 \mathrm{~km}$ in front of the telescope with station-keeping to within a ± 1 meter tolerance over the course of a multihour exposure.

REMINDER: We landed humans on the moon and brought them safely home again.

WFIRST Space Telescope

Repurposed NRO Spy Satellite

Similar to Hubble.
Aperture: 2.4 meters.
Central Obstruction and Spiders.

$$
\begin{aligned}
& \because \text { vosegts gheoer } \because \\
& \because 100 / 10 \cdot 1 / 201! \\
& \because \text { Ahor "MA! }
\end{aligned}
$$

