The ParametričSelf-Dual Simplex Method Revisited

My Congrats to Robert Freund

To Rob:

- It is great that you have been here on Earth for 70 years.

My Congrats to Robert Freund

To Rob:

- It is great that you have been here on Earth for 70 years.
- And at MIT for 40 years.

My Congrats to Robert Freund

To Rob:

- It is great that you have been here on Earth for 70 years.
- And at MIT for 40 years.
- It's been really fun hanging out with you at conferences all around the world.

My Congrats to Robert Freund

To Rob:

- It is great that you have been here on Earth for 70 years.
- And at MIT for 40 years.
- It's been really fun hanging out with you at conferences all around the world.
- I'm hoping that maybe we can someday visit Mars together.

To Rob:

- It is great that you have been here on Earth for 70 years.
- And at MIT for 40 years.
- It's been really fun hanging out with you at conferences all around the world.
- I'm hoping that maybe we can someday visit Mars together.

To everyone else:

- Rob and I both served as Chairs of the INFORMS Optimization Section (1999-2002).

To Rob:

- It is great that you have been here on Earth for 70 years.
- And at MIT for 40 years.
- It's been really fun hanging out with you at conferences all around the world.
- I'm hoping that maybe we can someday visit Mars together.

To everyone else:

- Rob and I both served as Chairs of the INFORMS Optimization Section (1999-2002).
- I'm a glider pilot. I gave Rob three rides on Apr. 19, 1993. The third one was really really good-released from tow at 4000 feet and climbed to 7600 feet.

My Congrats to Robert Freund

To Rob:

- It is great that you have been here on Earth for 70 years.
- And at MIT for 40 years.
- It's been really fun hanging out with you at conferences all around the world.
- I'm hoping that maybe we can someday visit Mars together.

To everyone else:

- Rob and I both served as Chairs of the INFORMS Optimization Section (1999-2002).
- I'm a glider pilot. I gave Rob three rides on Apr. 19, 1993. The third one was really really good-released from tow at 4000 feet and climbed to 7600 feet.
- Rob and I have been friends for 35 years. But, we've only co-authored one paper together and that was 31 years ago...

Prior Reduced Fill-in in Solving Equations in Interior Point Algorithms
John Birge, Robert Freund, Robert Vanderbei
Operations Research Letters, 1992

Linear Optimization in "Symmetric Form"

Here's a primal problem in "standard" (aka inequality) form:

$$
\begin{array}{ll}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x \geq 0
\end{array}
$$

Linear Optimization in "Symmetric Form"

Here's a primal problem in "standard" (aka inequality) form:

$$
\begin{array}{ll}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x \geq 0
\end{array}
$$

Here's it's dual:

$$
\begin{array}{ll}
\operatorname{minimize} & b^{T} y \\
\text { subject to } & A^{T} y \geq c \\
& y \geq 0
\end{array}
$$

Linear Optimization in "Symmetric Form"

Here's a primal problem in "standard" (aka inequality) form:

$$
\begin{array}{ll}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x \geq 0
\end{array}
$$

Here's it's dual:

$$
\begin{array}{ll}
\operatorname{minimize} & b^{T} y \\
\text { subject to } & A^{T} y \geq c \\
& y \geq 0
\end{array}
$$

Writing the dual in standard form, we see that it's the negative transpose of the primal problem:

$$
\begin{aligned}
-\operatorname{maximize} & -b^{T} y \\
\text { subject to } & -A^{T} y \leq-c \\
& y \geq 0
\end{aligned}
$$

Linear Optimization in "Symmetric Form"

Here's a primal problem in "standard" (aka inequality) form:

$$
\begin{array}{ll}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x \geq 0
\end{array}
$$

Here's it's dual:

$$
\begin{array}{ll}
\operatorname{minimize} & b^{T} y \\
\text { subject to } & A^{T} y \geq c \\
& y \geq 0
\end{array}
$$

Writing the dual in standard form, we see that it's the negative transpose of the primal problem:

$$
\begin{aligned}
-\operatorname{maximize} & -b^{T} y \\
\text { subject to } & -A^{T} y \leq-c \\
& y \geq 0
\end{aligned}
$$

Duality \quad The dual of the dual is the primal.

Linear Optimization in "Symmetric Form"

Here's a primal problem in "standard" (aka inequality) form:

$$
\begin{array}{ll}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x \geq 0
\end{array}
$$

Here's it's dual:

$$
\begin{array}{ll}
\operatorname{minimize} & b^{T} y \\
\text { subject to } & A^{T} y \geq c \\
& y \geq 0
\end{array}
$$

Writing the dual in standard form, we see that it's the negative transpose of the primal problem:

$$
\begin{aligned}
- \text { maximize } & -b^{T} y \\
\text { subject to } & -A^{T} y \leq-c \\
& y \geq 0
\end{aligned}
$$

Duality \quad The dual of the dual is the primal.
Weak Duality If x is primal feasible and y is dual feasible, then $c^{T} x \leq y^{T} A x \leq y^{T} b$.

Linear Optimization in "Symmetric Form"

Here's a primal problem in "standard" (aka inequality) form:

$$
\begin{array}{ll}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x \geq 0
\end{array}
$$

Here's it's dual:

$$
\begin{array}{ll}
\operatorname{minimize} & b^{T} y \\
\text { subject to } & A^{T} y \geq c \\
& y \geq 0
\end{array}
$$

Writing the dual in standard form, we see that it's the negative transpose of the primal problem:

$$
\begin{aligned}
-\operatorname{maximize} & -b^{T} y \\
\text { subject to } & -A^{T} y \leq-c \\
& y \geq 0
\end{aligned}
$$

Duality \quad The dual of the dual is the primal.
Weak Duality If x is primal feasible and y is dual feasible, then $c^{T} x \leq y^{T} A x \leq y^{T} b$.
Strong Duality If x is optimal for the primal, then there exists a dual-feasible y such that

$$
c^{T} x=b^{T} y
$$

An Example

Primal Problem:

maximize $-3 x_{1}+11 x_{2}+2 x_{3}$
subj. to $\begin{array}{rlrl}-x_{1} & +3 x_{2} & \leq 5 \\ 3 x_{1} & +3 x_{2} & \leq \\ & 3 x_{2}+2 x_{3} & \leq 6 \\ -3 x_{1} & & -5 x_{3} & \leq-4 \\ & x_{1}, x_{2}, x_{3} & \geq 0\end{array}$

Dual Problem:

$$
\begin{array}{rrlll}
- \text { maximize } & -5 y_{1} & -4 y_{2} & -6 y_{3} & +4 y_{4} \\
\text { subj. to } & y_{1} & -3 y_{2} & & \\
& -3 y_{1} & -3 y_{2} & -3 y_{3} & \leq \\
& & -2 y_{3}+5 y_{4} & \leq-11 \\
& & \leq 2
\end{array}
$$

$$
y_{1}, y_{2}, y_{3}, y_{4} \geq 0
$$

An Example

Primal Problem:

$$
\begin{array}{rrr}
\operatorname{maximize} & -3 x_{1}+11 x_{2}+2 x_{3} \\
\text { subj. to }-x_{1}+3 x_{2} & \leq 5 \\
3 x_{1}+3 x_{2} & \leq 4 \\
& 3 x_{2}+2 x_{3} & \leq 6 \\
& -3 x_{1} & \leq-4 \\
& x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

Dual Problem:

$$
\begin{aligned}
& \text {-maximize }-5 y_{1}-4 y_{2}-6 y_{3}+4 y_{4}
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}, y_{2}, y_{3}, y_{4} \geq 0
\end{aligned}
$$

Written in Dictionary Form:

ζ			$-3 x_{1}+11 x_{2}$	$+2 x_{3}$	
w_{1}	$=$	5	$x_{1}-3 x_{2}$		
w_{2}	$=$	$4-3 x_{1}-3 x_{2}$			
w_{3}	$=$	6		$3 x_{2}$	
w_{4}	$=$	-4	$+3 x_{1}$		

Dictionary Solution:

$$
\begin{gathered}
x_{1}=0, x_{2}=0, x_{3}=0 \\
w_{1}=5, w_{2}=4, w_{3}=6, w_{4}=-4
\end{gathered}
$$

Written in Dictionary Form:

$$
\begin{array}{rlrl}
-\xi & = & -5 y_{1}-4 y_{2}-6 y_{3}+4 y_{4} \\
\hline z_{1} & =3-3 y_{1}+3 y_{2} & -3 y_{4} \\
z_{2} & =-11+3 y_{1}+3 y_{2}+3 y_{3} \\
z_{3} & =-2 & & \\
& & & \\
z_{3} & -5 y_{4}
\end{array}
$$

Dictionary Solution:

$$
\begin{gathered}
y_{1}=0, y_{2}=0, y_{3}=0, y_{4}=0, \\
z_{1}=3, z_{2}=-11, z_{3}=-2
\end{gathered}
$$

Note: Current "solution" is neither primal nor dual feasible.

Parametric Self-Dual Simplex Method

Introduce a parameter μ and perturb:

Primal Problem:

Dual Problem:

Here's how the primal version looks in my online pivot tool:

$$
11 \leq \mu \leq \quad \infty
$$

For $\mu \geq 11$, dictionary is optimal. x_{2} is the entering variable and w_{2} is the leaving variable.

Before and After the First Pivot

$$
\mathrm{X}_{1}, \mathrm{X}_{0}, \mathrm{X}_{2}, \quad \mathrm{w}_{1}, \mathrm{w}_{0}, \mathrm{w}_{2}, \mathrm{w}_{4} \geq 0
$$

$11 \leq \mu \leq \quad \infty$

$\begin{aligned} & \text { maximize } \quad \zeta=44 / 3 \\ &+-4 / 3 \mu+11 / 3 \mu+-14 x_{1}+-11 / 3 w_{2}+2 \\ & x_{3}\end{aligned}$
subject to:

$$
\begin{aligned}
& x_{1}, x_{0}, x_{a}, w_{1}, w_{0}, w_{2}, w_{A} \geq 0
\end{aligned}
$$

Before and After the Second Pivot

subject to:

$$
\mathrm{x}_{1}, \quad \mathrm{X}_{0}, \mathrm{x}_{2}, \quad \mathrm{w}_{1}, \mathrm{w}_{0}, \mathrm{w}_{2}, \mathrm{w}_{4} \geq 0
$$

$4 \leq \mu \leq 11$

subject to:

$$
x_{1}, w_{0}, w_{4}, \quad w_{1}, x_{0}, w_{3}, x_{3} \geq 0
$$

Before and After the Third Pivot

We're done! It's optimal.

- Freedom to pick perturbation as you like.
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone-no need to remove it.
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone-no need to remove it.
- The average-case performance can be analyzed.
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone-no need to remove it.
- The average-case performance can be analyzed.
- In some real-world problems, a "natural" perturbation exists.
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone-no need to remove it.
- The average-case performance can be analyzed.
- In some real-world problems, a "natural" perturbation exists.

Okay, there are only 6 items in the list. SORRY.

Using only ± 1 's for the initial perturbation coefficients, the parametric self-dual simplex method used on the Klee-Minty problem takes an exponential number of pivots.

Here it is with $n=4 \ldots$

Current Dictionary

The problem, as shown, takes $2^{n}-1=15$ pivots.
And, as usual with the Klee-Minty problem we can change the parameter coefficients so that x_{4} is the first entering variable and the algorithm converges in just one pivot.

Thought experiment:

- μ starts at ∞.
- In reducing μ, there are $n+m$ barriers.
- At each iteration, one barrier is passed-the others move about "randomly".
- To get μ to zero, we must on average pass half the barriers.
- Therefore, on average the algorithm should take $(m+n) / 2$ iterations.

Real-World Data

Name	m	n	iters	Name	m	n	iters
25fv47	777	1545	5089		nesm	646	2740
5829							
80bau3b	2021	9195	10514		recipe	74	136
adlittle	53	96	141		80		
afiro	25	32	16		sc105	104	103
sc205	203	202	191				
agg2	481	301	204		sc50a	49	48
agg3	481	301	193		sc50b	48	48
bandm	224	379	1139	53			
beaconfd	111	172	113	scagr25	347	499	1336
blend	72	83	117	scagr7	95	139	339
bn11	564	1113	2580	scfxm1	282	439	531
bnl2	1874	3134	6381	scfxm2	564	878	1197
boeing1	298	373	619	scfxm3	846	1317	1886
boeing2	125	143	168	scorpion	292	331	411
bore3d	138	188	227	scrs8	447	1131	783
brandy	123	205	585	scsd1	77	760	172
czprob	689	2770	2635	scsd6	147	1350	494
d6cube	403	6183	5883	scsd8	397	2750	1548
degen2	444	534	1421	sctap1	284	480	643
degen3	1503	1818	6398	sctap2	1033	1880	1037
e226	162	260	598	sctap3	1408	2480	1339

Name	m	n	iters	Name	m	n	iters
etamacro	334	542	1580	share1b	107	217	404
fffff800	476	817	1029	share2b	93	79	189
finnis	398	541	680	shell	487	1476	1155
fit1d	24	1026	925	ship04l	317	1915	597
fit1p	627	1677	15284	ship04s	241	1291	560
forplan	133	415	576	ship08\|	520	3149	1091
ganges	1121	1493	2716	ship08s	326	1632	897
greenbea	1948	4131	21476	ship12\|	687	4224	1654
grow15	300	645	681	ship12s	417	1996	1360
grow22	440	946	999	sierra	1212	2016	793
grow7	140	301	322	standata	301	1038	74
israel	163	142	209	standmps	409	1038	295
kb2	43	41	63	stocfor1	98	100	81
lotfi	134	300	242	stocfor2	2129	2015	2127
maros	680	1062	2998				

Observed Data:

$$
\begin{aligned}
t & =\# \text { of iterations } \\
m & =\# \text { of constraints } \\
n & =\# \text { of variables }
\end{aligned}
$$

Model:

$$
t \approx 2^{\alpha}(m+n)^{\beta}
$$

Linearization: Take logs:

$$
\log t=\alpha \log 2+\beta \log (m+n)+\underset{\substack{\uparrow \\ \text { error }}}{\epsilon}
$$

Parametric Self-Dual Simplex Method

Recall the thought experiment:

- μ starts at ∞.
- In reducing μ, there are $n+m$ barriers.
- At each iteration, one barrier is passed-the others move about randomly.
- To get μ to zero, we must on average pass half the barriers.
- Therefore, on average the algorithm should take $(m+n) / 2$ iterations.

Using 69 real-world problems from the Netlib suite...
Least Squares Regression:

$$
\left[\begin{array}{l}
\bar{\alpha} \\
\bar{\beta}
\end{array}\right]=\left[\begin{array}{r}
-1.03561 \\
1.05152
\end{array}\right] \quad \Longrightarrow \quad T \approx 0.488(m+n)^{1.052}
$$

Least Absolute Deviation Regression:

$$
\left[\begin{array}{l}
\hat{\alpha} \\
\hat{\beta}
\end{array}\right]=\left[\begin{array}{r}
-0.9508 \\
1.0491
\end{array}\right] \quad \Longrightarrow \quad T \approx 0.517(m+n)^{1.049}
$$

Parametric Self-Dual Simplex Method

A $\log -\log$ plot of T vs. $m+n$ and the L^{1} and L^{2} regression lines.

https://vanderbei.princeton.edu/307/python/psd_simplex_pivot.ipynb

References

[1] I. Adler and N. Megiddo. A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension. Journal of the ACM, 32:871-895, 1985.
[2] J.R. Birge, R.M. Freund, and R.J. Vanderbei. Prior reduced fill-in in solving equations in interior point algorithms. $O R$ Letters, 11:195-198, 1992.
[3] K.-H. Borgwardt. The average number of pivot steps required by the simplex-method is polynomial. Zeitschrift für Operations Research, 26:157-177, 1982.
[4] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1963.
[5] S.I. Gass and T. Saaty. The computational algorithm for the parametric objective function. Naval Research Logistics Quarterly, 2:39-45, 1955.
[6] C.E. Lemke. Bimatrix equilibrium points and mathematical programming. Management Science, 11:681-689, 1965.
[7] I.J. Lustig. The equivalence of Dantzig's self-dual parametric algorithm for linear programs to Lemke's algorithm. Technical Report SOL 87-4, Department of Operations Research, Stanford University, 1987.
[8] J.L. Nazareth. Homotopy techniques in linear programming. Algorithmica, 1:529-535, 1986.
[9] B. Rudloff, F. Ulus, and R.J. Vanderbei. A parametric simplex algorithm for linear vector optimization problems. Mathematical Programming, Series A, 163(1):213-242, 2017.
[10] S. Smale. On the average number of steps of the simplex method of linear programming. Mathematical Programming, 27:241-262, 1983.
[11] R.J. Vanderbei. Linear Programming: Foundations and Extensions. Springer, 4th edition, 2013.

Thank You!

Questions?

Some Acknowledgements

```
5
4
6
10
3
8
7
1
1 1
9
2
```

