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My Congrats to Robert Freund

To Rob:

• It is great that you have been here on Earth for 70 years.

• And at MIT for 40 years.

• It’s been really fun hanging out with you at conferences all around the world.

• I’m hoping that maybe we can someday visit Mars together.

To everyone else:

• Rob and I both served as Chairs of the INFORMS Optimization Section (1999-2002).

• I’m a glider pilot. I gave Rob three rides on Apr. 19, 1993. The third one was really
really good–released from tow at 4000 feet and climbed to 7600 feet.

• Rob and I have been friends for 35 years. But, we’ve only co-authored one paper together
and that was 31 years ago...

Prior Reduced Fill-in in Solving Equations in Interior Point Algorithms

John Birge, Robert Freund, Robert Vanderbei

Operations Research Letters, 1992
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Linear Optimization in “Symmetric Form”

Here’s a primal problem in “standard” (aka inequality) form:

maximize cTx
subject to Ax≤ b

x≥ 0

Here’s it’s dual:
minimize bTy
subject to ATy≥ c

y≥ 0

Writing the dual in standard form, we see that it’s the negative transpose of the primal
problem:

−maximize −bTy
subject to −ATy≤ −c

y≥ 0

Duality The dual of the dual is the primal.

Weak Duality If x is primal feasible and y is dual feasible, then cTx ≤ yTAx ≤ yTb.

Strong Duality If x is optimal for the primal, then there exists a dual-feasible y such that

cTx = bTy.
8
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An Example

Primal Problem:

maximize −3x1 + 11x2 + 2x3

subj. to −x1 + 3x2 ≤ 5
3x1 + 3x2 ≤ 4

3x2 + 2x3 ≤ 6
−3x1 − 5x3 ≤ −4

x1, x2, x3 ≥ 0

Dual Problem:

−maximize −5y1 − 4y2 − 6y3 + 4y4

subj. to y1 − 3y2 + 3y4 ≤ 3
−3y1 − 3y2 − 3y3 ≤ −11

− 2y3 + 5y4 ≤ −2

y1, y2, y3, y4 ≥ 0

Written in Dictionary Form:

ζ = −3x1 + 11 x2 + 2 x3
w1 = 5 + x1 − 3x2
w2 = 4 − 3x1 − 3x2
w3 = 6 − 3x2 − 2x3
w4 = −4 + 3x1 + 5x3

Written in Dictionary Form:

−ξ = −5y1 − 4y2 − 6y3 + 4 y4
z1 = 3 − y1 + 3y2 − 3y4
z2 = −11 + 3y1 + 3y2 + 3y3
z3 = −2 + 2y3 − 5y4

Dictionary Solution:

x1 = 0, x2 = 0, x3 = 0,

w1 = 5, w2 = 4, w3 = 6, w4 = −4

Dictionary Solution:

y1 = 0, y2 = 0, y3 = 0, y4 = 0,

z1 = 3, z2 = −11 , z3 = −2

Note: Current “solution” is neither primal nor dual feasible.
14
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Parametric Self-Dual Simplex Method

Introduce a parameter µ and perturb:

Primal Problem:

ζ = −3 x1 + 11 x2 + 2 x3
−µx1 − µx2 − µx3

w1 = 5 + µ + x1 − 3x2
w2 = 4 + µ − 3x1 − 3x2
w3 = 6 + µ − 3x2 − 2x3
w4 = −4 + µ + 3x1 + 5x3

Dual Problem:

−ξ = −5 y1 − 4 y2 − 6 y3 + 4 y4
−µy1 − µy2 − µy3 − µy4

z1 = 3 + µ − y1 + 3y2 − 3y4
z2 = −11 + µ + 3y1 + 3y2 + 3y3
z3 = −2 + µ + 2y3 − 5y4

Here’s how the primal version looks in my online pivot tool:

For µ ≥ 11, dictionary is optimal. x2 is the entering variable and w2 is the leaving variable.
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Before and After the First Pivot

17

https://vanderbei.princeton.edu/JAVA/pivot/advanced.html?example=OmegaRho
https://vanderbei.princeton.edu/JAVA/pivot/advanced.html?example=OmegaRho


Before and After the Second Pivot
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Before and After the Third Pivot

We’re done! It’s optimal.
19
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Top Ten Reasons to Like this Method

• Freedom to pick perturbation as you like.

• Randomizing perturbation completely solves the degeneracy problem.

• Perturbations don’t have to be “small”.

• In the optimal dictionary, perturbation is completely gone—no need to remove it.

• The average-case performance can be analyzed.

• In some real-world problems, a “natural” perturbation exists.

Okay, there are only 6 items in the list. SORRY.
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Worst Case is Exponential

Using only ±1’s for the initial perturbation coefficients, the parametric self-dual simplex
method used on the Klee-Minty problem takes an exponential number of pivots.

Here it is with n = 4...

The problem, as shown, takes 2n − 1 = 15 pivots.

And, as usual with the Klee-Minty problem we can change the parameter coefficients so that
x4 is the first entering variable and the algorithm converges in just one pivot.
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Expected Number of Pivots

Thought experiment:

• µ starts at ∞.

• In reducing µ, there are n + m barriers.

• At each iteration, one barrier is passed—the others move about “randomly”.

• To get µ to zero, we must on average pass half the barriers.

• Therefore, on average the algorithm should take (m + n)/2 iterations.

28



Real-World Data

Name m n iters Name m n iters
25fv47 777 1545 5089 nesm 646 2740 5829
80bau3b 2021 9195 10514 recipe 74 136 80
adlittle 53 96 141 sc105 104 103 92
afiro 25 32 16 sc205 203 202 191
agg2 481 301 204 sc50a 49 48 46
agg3 481 301 193 sc50b 48 48 53
bandm 224 379 1139 scagr25 347 499 1336
beaconfd 111 172 113 scagr7 95 139 339
blend 72 83 117 scfxm1 282 439 531
bnl1 564 1113 2580 scfxm2 564 878 1197
bnl2 1874 3134 6381 scfxm3 846 1317 1886
boeing1 298 373 619 scorpion 292 331 411
boeing2 125 143 168 scrs8 447 1131 783
bore3d 138 188 227 scsd1 77 760 172
brandy 123 205 585 scsd6 147 1350 494
czprob 689 2770 2635 scsd8 397 2750 1548
d6cube 403 6183 5883 sctap1 284 480 643
degen2 444 534 1421 sctap2 1033 1880 1037
degen3 1503 1818 6398 sctap3 1408 2480 1339
e226 162 260 598 seba 449 896 766
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Data Continued

Name m n iters Name m n iters
etamacro 334 542 1580 share1b 107 217 404
fffff800 476 817 1029 share2b 93 79 189
finnis 398 541 680 shell 487 1476 1155
fit1d 24 1026 925 ship04l 317 1915 597
fit1p 627 1677 15284 ship04s 241 1291 560
forplan 133 415 576 ship08l 520 3149 1091
ganges 1121 1493 2716 ship08s 326 1632 897
greenbea 1948 4131 21476 ship12l 687 4224 1654
grow15 300 645 681 ship12s 417 1996 1360
grow22 440 946 999 sierra 1212 2016 793
grow7 140 301 322 standata 301 1038 74
israel 163 142 209 standmps 409 1038 295
kb2 43 41 63 stocfor1 98 100 81
lotfi 134 300 242 stocfor2 2129 2015 2127
maros 680 1062 2998

30



A Regression Model for Algorithm Efficiency

Observed Data:

t = # of iterations

m = # of constraints

n = # of variables

Model:
t ≈ 2α(m + n)β

Linearization: Take logs:

log t = α log 2 + β log(m + n) + ε
↑

error
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Parametric Self-Dual Simplex Method

Recall the thought experiment:

• µ starts at ∞.

• In reducing µ, there are n + m barriers.

• At each iteration, one barrier is passed—the others move about randomly.

• To get µ to zero, we must on average pass half the barriers.

• Therefore, on average the algorithm should take (m + n)/2 iterations.

Using 69 real-world problems from the Netlib suite...

Least Squares Regression:[
ᾱ
β̄

]
=

[
−1.03561

1.05152

]
=⇒ T ≈ 0.488(m + n)1.052

Least Absolute Deviation Regression:[
α̂

β̂

]
=

[
−0.9508

1.0491

]
=⇒ T ≈ 0.517(m + n)1.049
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A log–log plot of T vs. m + n and the L1 and L2 regression lines.
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Thank You!
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Questions?
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