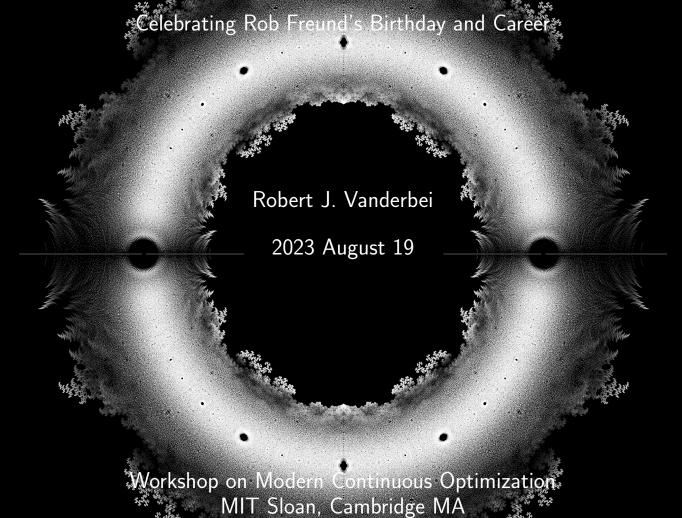
The Parametric Self-Dual Simplex Method Revisited



http://vanderbei.princeton.edu

To Rob:

• It is great that you have been here on Earth for 70 years.

To Rob:

- It is great that you have been here on Earth for 70 years.
- And at MIT for 40 years.

To Rob:

- It is great that you have been here on Earth for 70 years.
- And at MIT for 40 years.
- It's been really fun hanging out with you at conferences all around the world.

To Rob:

- It is great that you have been here on Earth for 70 years.
- And at MIT for 40 years.
- It's been really fun hanging out with you at conferences all around the world.
- I'm hoping that maybe we can someday visit Mars together.

To Rob:

- It is great that you have been here on Earth for 70 years.
- And at MIT for 40 years.
- It's been really fun hanging out with you at conferences all around the world.
- I'm hoping that maybe we can someday visit Mars together.

To everyone else:

• Rob and I both served as Chairs of the INFORMS Optimization Section (1999-2002).

To Rob:

- It is great that you have been here on Earth for 70 years.
- And at MIT for 40 years.
- It's been really fun hanging out with you at conferences all around the world.
- I'm hoping that maybe we can someday visit Mars together.

To everyone else:

- Rob and I both served as Chairs of the INFORMS Optimization Section (1999-2002).
- I'm a glider pilot. I gave Rob three rides on Apr. 19, 1993. The third one was really really good-released from tow at 4000 feet and climbed to 7600 feet.

To Rob:

- It is great that you have been here on Earth for 70 years.
- And at MIT for 40 years.
- It's been really fun hanging out with you at conferences all around the world.
- I'm hoping that maybe we can someday visit Mars together.

To everyone else:

- Rob and I both served as Chairs of the INFORMS Optimization Section (1999-2002).
- I'm a glider pilot. I gave Rob three rides on Apr. 19, 1993. The third one was really really good-released from tow at 4000 feet and climbed to 7600 feet.
- Rob and I have been friends for 35 years. But, we've only co-authored one paper together and that was 31 years ago...

Prior Reduced Fill-in in Solving Equations in Interior Point Algorithms

John Birge, Robert Freund, Robert Vanderbei Operations Research Letters, 1992

Here's a *primal* problem in "standard" (aka inequality) form:

$$\begin{array}{ll} \text{maximize} & c^T x \\ \text{subject to} & Ax \leq b \\ & x \geq 0 \end{array}$$

Here's a *primal* problem in "standard" (aka inequality) form:

Here's it's dual:

$$\begin{array}{ll} \text{minimize} & b^T y \\ \text{subject to} & A^T y \geq c \\ & y \geq 0 \end{array}$$

Here's a *primal* problem in "standard" (aka inequality) form:

$$\begin{array}{ll} \text{maximize} & c^T x \\ \text{subject to} & Ax \leq b \\ & x \geq 0 \end{array}$$

Here's it's dual:

minimize
$$b^T y$$

subject to $A^T y \ge c$
 $y \ge 0$

Writing the dual in standard form, we see that it's the *negative transpose* of the primal problem:

$$\begin{array}{ll} -\text{maximize} & -b^T y \\ \text{subject to} & -A^T y \leq -c \\ & y \geq 0 \end{array}$$

Here's a *primal* problem in "standard" (aka inequality) form:

$$\begin{array}{ll} \text{maximize} & c^T x \\ \text{subject to} & Ax \leq b \\ & x \geq 0 \end{array}$$

Here's it's dual:

minimize
$$b^T y$$

subject to $A^T y \ge c$
 $y \ge 0$

Writing the dual in standard form, we see that it's the *negative transpose* of the primal problem:

$$\begin{array}{ll} -\mathsf{maximize} & -b^T y \\ \mathsf{subject to} & -A^T y \leq -c \\ & y > 0 \end{array}$$

Duality The dual of the dual is the primal.

Here's a *primal* problem in "standard" (aka inequality) form:

$$\begin{array}{ll} \text{maximize} & c^T x \\ \text{subject to} & Ax \leq b \\ & x \geq 0 \end{array}$$

Here's it's dual:

minimize
$$b^T y$$

subject to $A^T y \ge c$
 $y \ge 0$

Writing the dual in standard form, we see that it's the *negative transpose* of the primal problem:

$$\begin{array}{ll} -\mathsf{maximize} & -b^T y \\ \mathsf{subject to} & -A^T y \leq -c \\ & y > 0 \end{array}$$

Duality The dual of the dual is the primal.

Weak Duality If x is primal feasible and y is dual feasible, then $c^Tx \leq y^TAx \leq y^Tb$.

Here's a *primal* problem in "standard" (aka inequality) form:

$$\begin{array}{ll} \text{maximize} & c^T x \\ \text{subject to} & Ax \leq b \\ & x \geq 0 \end{array}$$

Here's it's dual:

minimize
$$b^T y$$

subject to $A^T y \ge c$
 $y \ge 0$

Writing the dual in standard form, we see that it's the *negative transpose* of the primal problem:

$$\begin{array}{ll} -\mathsf{maximize} & -b^T y \\ \mathsf{subject to} & -A^T y \leq -c \\ & y > 0 \end{array}$$

Duality The dual of the dual is the primal.

Weak Duality If x is primal feasible and y is dual feasible, then $c^Tx \leq y^TAx \leq y^Tb$.

Strong Duality If x is optimal for the primal, then there exists a dual-feasible y such that

$$c^T x = b^T y.$$

An Example

Primal Problem:

Dual Problem:

-maximize
$$-5y_1$$
 - $4y_2$ - $6y_3$ + $4y_4$ subj. to y_1 - $3y_2$ + $3y_4$ \leq 3 $-3y_1$ - $3y_2$ - $3y_3$ \leq -11 $-2y_3$ + $5y_4$ \leq -2 y_1, y_2, y_3, y_4 \geq 0

Written in Dictionary Form

Written in *Dictionary Form*:

Dictionary Solution

$$x_1 = 0, \ x_2 = 0, \ x_3 = 0,$$

 $w_1 = 5, \ w_2 = 4, \ w_3 = 6, \ w_4 = -4$

Dictionary Solution:

$$y_1 = 0, y_2 = 0, y_3 = 0, y_4 = 0,$$

 $z_1 = 3, z_2 = -11, z_2 = -2$

An Example

Primal Problem:

Dual Problem:

-maximize
$$-5y_1$$
 - $4y_2$ - $6y_3$ + $4y_4$ subj. to y_1 - $3y_2$ + $3y_4$ \leq 3 $-3y_1$ - $3y_2$ - $3y_3$ \leq -11 $-2y_3$ + $5y_4$ \leq -2 y_1, y_2, y_3, y_4 \geq 0

Written in *Dictionary Form*:

Written in *Dictionary Form*:

Dictionary Solution:

$$x_1 = 0, \ x_2 = 0, \ x_3 = 0,$$

 $w_1 = 5, \ w_2 = 4, \ w_3 = 6, \ w_4 = \boxed{-4}$

Dictionary Solution:

$$y_1 = 0, y_2 = 0, y_3 = 0, y_4 = 0,$$

 $z_1 = 3, z_2 = -11, z_3 = -2$

Note: Current "solution" is neither primal nor dual feasible.

Parametric Self-Dual Simplex Method

Introduce a parameter μ and perturb:

Primal Problem:

Dual Problem:

Here's how the primal version looks in my online pivot tool:

maximize
$$\zeta = 0 + 0 \mu + -3 x_1 + 11 x_2 + 2 x_3 + 0 \mu + 0 \mu^2 + -1 \mu x_1 + -1 \mu x_2 + -1 \mu x_3$$
 subject to: $w_1 = 5 + 1 \mu - -1 x_1 - 3 x_2 - 0 x_3 + 1 \mu - 3 x_1 - 3 x_2 - 0 x_3 + 1 \mu - 3 x_1 - 3 x_2 - 0 x_3 + 1 \mu - 0 x_1 - 3 x_2 - 2 x_3 + 1 \mu - 0 x_1 - 3 x_1 - 0 x_2 - -5 x_3$ $x_1 = -4 + 1 \mu - -3 x_1 - 0 x_2 - -5 x_3$ $x_2 = -5 x_3$

For $\mu \geq 11$, dictionary is optimal. x_2 is the *entering variable* and w_2 is the *leaving variable*.

Before and After the First Pivot

maximize
$$\zeta = 0 + 0 \mu + -3 x_1 + 11 x_2 + 2 x_3 + 0 \mu + 0 \mu^2 + -1 \mu x_1 + -1 \mu x_2 + -1 \mu x_3$$
 subject to: $w_1 = 5 + 1 \mu - -1 x_1 - 3 x_2 - 0 x_3 + 1 \mu - 3 x_1 - 3 x_2 - 0 x_3 + 1 \mu - 3 x_1 - 3 x_2 - 0 x_3 + 1 \mu - 0 x_1 - 3 x_2 - 2 x_3 + 1 \mu - 0 x_1 - 3 x_1 - 0 x_2 - -5 x_3$ $x_1 = -4 + 1 \mu - -3 x_1 - 0 x_2 - -5 x_3$ $x_2 = -2 x_3 x_1 - 0 x_2 - -5 x_3$

maximize
$$\zeta = 44/3 + 11/3 \mu + -14 x_1 + -11/3 w_2 + 2 x_3 + -4/3 \mu + -1/3 \mu^2 + 0 \mu x_1 + 1/3 \mu w_2 + -1 \mu x_3$$
 subject to: $w_1 = 1 + 0 \mu - -4 x_1 - -1 w_2 - 0 x_3 x_2 = 4/3 + 1/3 \mu - 1 x_1 - 1/3 w_2 - 0 x_3 x_3 w_3 = 2 + 0 \mu - -3 x_1 - -1 w_2 - 2 x_3 x_4 - -1 \mu x_2 - 2 x_3 x_3 - -1 \mu x_2 - 2 x_3 x_4 - -1 \mu x_2 - 2 x_3 x_4 - -1 \mu x_2 - 2 x_3 x_3 - -1 \mu x_2 - 2 x_3 x_4 - -1 \mu x_2 - 2 x_3 x_3 - -1 \mu x_2 - 2 x_3 - -1 \mu x_3 - -1 \mu x_2 - 2 x_3 - -1 \mu x_3 - -1 \mu x_2 - 2 x_3 - -1 \mu x_3 -$

Before and After the Second Pivot

maximize
$$\zeta = 244/15 + 49/15 \mu + -76/5 x_1 + -11/3 w_2 + 2/5 w_4 + -32/15 \mu + -2/15 \mu^2 + 3/5 \mu x_1 + 1/3 \mu w_2 + -1/5 \mu w_4$$
 subject to: $w_1 = 1 + 0 \mu - -4 x_1 - -1 w_2 - 0 w_4 x_2 = 4/3 + 1/3 \mu - 1 x_1 - 1/3 w_2 - 0 w_4 w_3 = 2/5 + 2/5 \mu - -21/5 x_1 - -1 w_2 - 2/5 w_4 x_3 = 4/5 + -1/5 \mu - 3/5 x_1 - 0 w_2 - -1/5 w_4$

Before and After the Third Pivot

maximize
$$\zeta = 244/15$$
 $+ 49/15$ $\mu + -76/5$ $x_1 + -11/3$ $w_2 + 2/5$ $w_4 + -32/15$ $\mu + -2/15$ $\mu + -2/15$ $\mu + -1/5$ $\mu + -1/5$

-1 ≤ µ ≤ 2

We're done! It's optimal.

• Freedom to pick perturbation as you like.

- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.

- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".

- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone—no need to remove it.

- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone—no need to remove it.
- The average-case performance can be analyzed.

- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone—no need to remove it.
- The average-case performance can be analyzed.
- In some real-world problems, a "natural" perturbation exists.

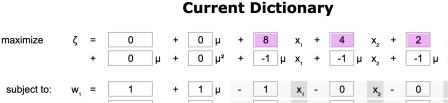
- Freedom to pick perturbation as you like.
- Randomizing perturbation completely solves the degeneracy problem.
- Perturbations don't have to be "small".
- In the optimal dictionary, perturbation is completely gone—no need to remove it.
- The average-case performance can be analyzed.
- In some real-world problems, a "natural" perturbation exists.

Okay, there are only 6 items in the list. SORRY.

Worst Case is Exponential

Using only ± 1 's for the initial perturbation coefficients, the parametric self-dual simplex method used on the Klee-Minty problem takes an exponential number of pivots.

Here it is with n=4...



The problem, as shown, takes $2^n - 1 = 15$ pivots.

And, as usual with the Klee-Minty problem we can change the parameter coefficients so that x_4 is the first entering variable and the algorithm converges in just *one pivot*.

Expected Number of Pivots

Thought experiment:

- \bullet μ starts at ∞ .
- In reducing μ , there are n+m barriers.
- At each iteration, one barrier is passed—the others move about "randomly".
- ullet To get μ to zero, we must on average pass half the barriers.
- Therefore, on average the algorithm should take (m+n)/2 iterations.

Real-World Data

Name	m	n	iters	Name	\overline{m}	n	iters	
25fv47	777	1545	5089	nesm	646	2740	5829	
80bau3b	2021	9195	10514	recipe	74	136	80	
adlittle	53	96	141	sc105	104	103	92	
afiro	25	32	16	sc205	203	202	191	
agg2	481	301	204	sc50a	49	48	46	
agg3	481	301	193	sc50b	48	48	53	
bandm	224	379	1139	scagr25	347	499	1336	
beaconfd	111	172	113	scagr7	95	139	339	
blend	72	83	117	scfxm1	282	439	531	
bnl1	564	1113	2580	scfxm2	564	878	1197	
bnl2	1874	3134	6381	scfxm3	846	1317	1886	
boeing1	298	373	619	scorpion	292	331	411	
boeing2	125	143	168	scrs8	447	1131	783	
bore3d	138	188	227	scsd1	77	760	172	
brandy	123	205	585	scsd6	147	1350	494	
czprob	689	2770	2635	scsd8	397	2750	1548	
d6cube	403	6183	5883	sctap1	284	480	643	
degen2	444	534	1421	sctap2	1033	1880	1037	
degen3	1503	1818	6398	sctap3	1408	2480	1339	
e226	162	260	598	seba	449	896	766	

Data Continued

Name	m	\overline{n}	iters	Name	\overline{m}	\overline{n}	iters	
etamacro	334	542	1580	share1b	107	217	404	
fffff800	476	817	1029	share2b	93	79	189	
finnis	398	541	680	shell	487	1476	1155	
fit1d	24	1026	925	ship04l	317	1915	597	
fit1p	627	1677	15284	ship04s	241	1291	560	
forplan	133	415	576	ship08l	520	3149	1091	
ganges	1121	1493	2716	ship08s	326	1632	897	
greenbea	1948	4131	21476	ship12l	687	4224	1654	
grow15	300	645	681	ship12s	417	1996	1360	
grow22	440	946	999	sierra	1212	2016	793	
grow7	140	301	322	standata	301	1038	74	
israel	163	142	209	standmps	409	1038	295	
kb2	43	41	63	stocfor1	98	100	81	
lotfi	134	300	242	stocfor2	2129	2015	2127	
maros	680	1062	2998					

A Regression Model for Algorithm Efficiency

Observed Data:

$$t = \#$$
 of iterations $m = \#$ of constraints $n = \#$ of variables

Model:

$$t \approx 2^{\alpha}(m+n)^{\beta}$$

Linearization: Take logs:

$$\log t = \alpha \log 2 + \beta \log(m+n) + \epsilon$$
error

Parametric Self-Dual Simplex Method

Recall the thought experiment:

- \bullet μ starts at ∞ .
- In reducing μ , there are n+m barriers.
- At each iteration, one barrier is passed—the others move about randomly.
- ullet To get μ to zero, we must on average pass half the barriers.
- Therefore, on average the algorithm should take (m+n)/2 iterations.

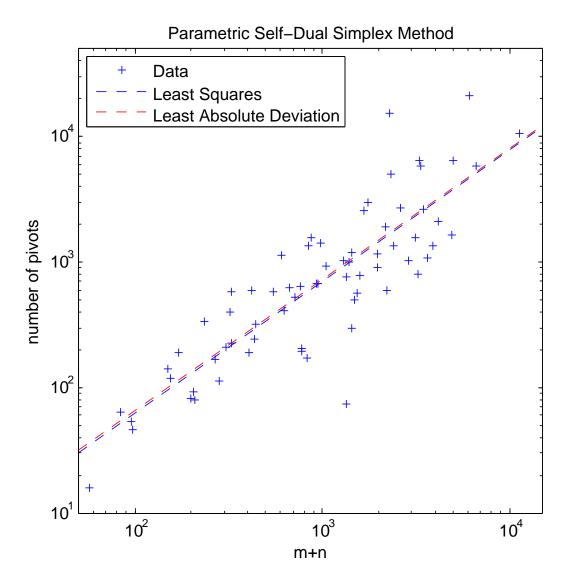
Using 69 real-world problems from the *Netlib* suite...

Least Squares Regression:

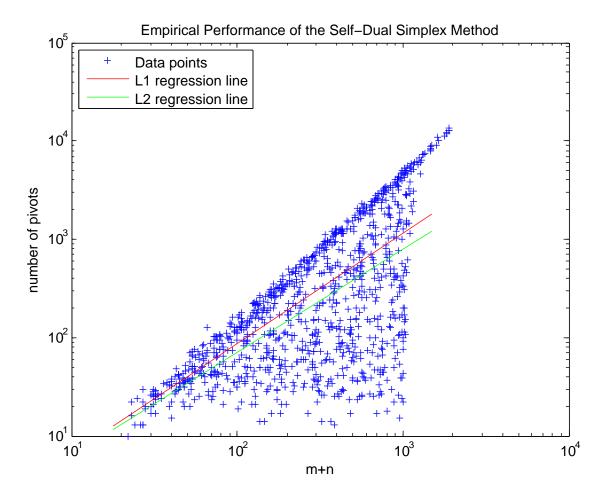
$$\begin{bmatrix} \bar{\alpha} \\ \bar{\beta} \end{bmatrix} = \begin{bmatrix} -1.03561 \\ 1.05152 \end{bmatrix} \Longrightarrow T \approx 0.488(m+n)^{1.052}$$

Least Absolute Deviation Regression:

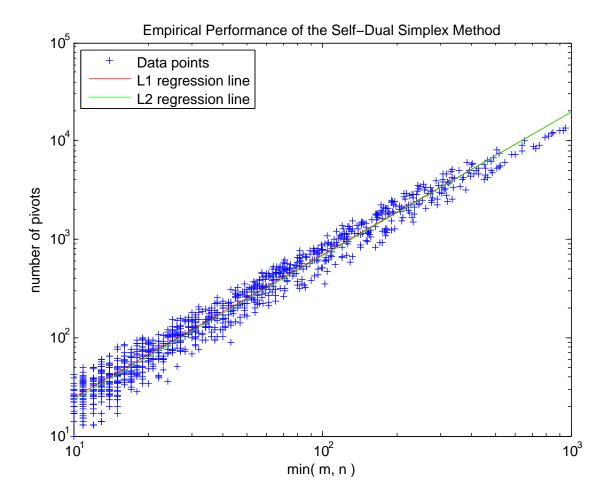
$$\begin{bmatrix} \hat{\alpha} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} -0.9508 \\ 1.0491 \end{bmatrix} \implies T \approx 0.517(m+n)^{1.049}$$



A log-log plot of T vs. m+n and the L^1 and L^2 regression lines.



iters =
$$0.486(m + n)^{1.12}$$



iters =
$$0.8 \min(\mathbf{m}, \mathbf{n})^{1.46}$$

References

- [1] I. Adler and N. Megiddo. A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension. *Journal of the ACM*, 32:871–895, 1985.
- [2] J.R. Birge, R.M. Freund, and R.J. Vanderbei. Prior reduced fill-in in solving equations in interior point algorithms. *OR Letters*, 11:195–198, 1992.
- [3] K.-H. Borgwardt. The average number of pivot steps required by the simplex-method is polynomial. *Zeitschrift für Operations Research*, 26:157–177, 1982.
- [4] G.B. Dantzig. *Linear Programming and Extensions*. Princeton University Press, Princeton, NJ, 1963.
- [5] S.I. Gass and T. Saaty. The computational algorithm for the parametric objective function. *Naval Research Logistics Quarterly*, 2:39–45, 1955.
- [6] C.E. Lemke. Bimatrix equilibrium points and mathematical programming. *Management Science*, 11:681–689, 1965.
- [7] I.J. Lustig. The equivalence of Dantzig's self-dual parametric algorithm for linear programs to Lemke's algorithm. Technical Report SOL 87-4, Department of Operations Research, Stanford University, 1987.
- [8] J.L. Nazareth. Homotopy techniques in linear programming. *Algorithmica*, 1:529–535, 1986.
- [9] B. Rudloff, F. Ulus, and R.J. Vanderbei. A parametric simplex algorithm for linear vector optimization problems. *Mathematical Programming, Series A*, 163(1):213–242, 2017.
- [10] S. Smale. On the average number of steps of the simplex method of linear programming. *Mathematical Programming*, 27:241–262, 1983.
- [11] R.J. Vanderbei. *Linear Programming: Foundations and Extensions*. Springer, 4th edition, 2013.

Thank You!

Questions?

Some Acknowledgements

- R