Extinguishing Poisson’s Spot
with Linear Programming

Robert J. Vanderbei

2009 January 13

INFORMS Computing Society
Charleston, SC

http://www.princeton.edu/~rvdb
Are We Alone?
Indirect Detection Methods

Over 300 planets found—more all the time
Wobble Methods

Radial Velocity (RV).
For approximately edge-on systems.
Measure periodic doppler shift.

Astrometry.
Best for face-on systems.
Measure circular wobble against background stars.
Transit Method

- HD209458b confirmed both via RV and transit.
- Period: 3.5 days
- Separation: 0.045 AU (0.001 arcsecs)
- Radius: $1.3R_J$
- Intensity Dip: $\sim 1.7\%$
- Venus Dip = 0.01%, Jupiter Dip: 1%

Venus Transit (R.J. Vanderbei)

Credit: Hans Deeg, from 'Transits of Extrasolar Planets'
Direct Imaging

Fomalhaut.

Distance: 25 light-years \(\textbf{Star-Planet Separation:} \) 100 AU
Terrestrial Planet Finder Telescope (TPF)

- **DETECT**: Search 150-500 nearby (5-15 pc distant) Sun-like stars for Earth-like planets.
- **CHARACTERIZE**: Determine basic physical properties and measure “biomarkers”, indicators of life or conditions suitable to support it.

Why Is It Hard? Can’t Hubble do it?

- If the star is Sun-like and the planet is Earth-like, then the reflected visible light from the planet is 10^{-10} times as bright as the star.
- If the star is 10 pc (33 ly) away and the planet is 1 AU from the star, the angular separation is at most 0.1 arcseconds!
- A point source (i.e. star) produces not a point image but an *Airy pattern* consisting of an *Airy disk* surrounded by a system of *diffraction rings* completely swamping light from the nearby planet.
- By *apodizing* the entrance pupil, one can control the shape and strength of the diffraction rings.
Space Occulter Design for Planet-Finding
Space-based Occulter (TPF-O)

Telescope Aperture: 4m, Occulter Diameter: 50m, Occulter Distance: 72,000km
Plain External Occulter (Doesn’t Work!)

Shadow ⇒

Circular Occulter ⇓

Note bright spot at center (Poisson’s spot)

Telescope Image

Shadow (Log Stretch)
Shaped Occulter—Eliminates Poisson’s Spot

Shadow \Rightarrow

Shaped Occulter

\Downarrow

\leftarrow Bright spot is gone

\uparrow

Telescope image shows planet

\leftarrow Shadow is dark (Log Stretch)
Apodized Occulters

- The problem (as mentioned before) is \textit{diffraction}.
- Abrupt edges create unwanted diffraction.
- \textbf{Solution:} Soften the edges with a partially transmitting material—an \textit{apodizer}.
- Let $A(r, \theta)$ denote \textit{attenuation} at location (r, θ) on the occulter.
- The \textit{intensity} of the downstream light is given by the square of the magnitude of the electric field $E(\rho, \phi)$.
- \textit{Babinet’s principle} plus \textit{Fresnel propagation} gives a formula for the downstream electric field:

$$E(\rho, \phi) = 1 - \frac{1}{i\lambda z} \int_0^\infty \int_0^{2\pi} e^{\frac{ir}{\lambda z}(r^2 + \rho^2 - 2r\rho \cos(\theta - \phi))} A(r, \theta) r d\theta dr.$$

where

- z is distance “downstream” and
- λ is wavelength of light.
Attenuation Profile Optimization

minimize γ

subject to

$-\gamma \leq \Re(E(\rho)) \leq \gamma$ for $\rho \in \mathcal{R}$, $\lambda \in \Lambda$

$-\gamma \leq \Im(E(\rho)) \leq \gamma$ for $\rho \in \mathcal{R}$, $\lambda \in \Lambda$

$A'(r) \leq 0$ for $0 \leq r \leq R$

$-d \leq A''(r) \leq d$ for $0 \leq r \leq R$

Specific choice:

$R = 25$, $d = 0.04$, $\mathcal{R} = [0, 3]$, $\Lambda = [0.4, 1.1] \times 10^{-6}$

where all metric quantities are in meters.

An infinite dimensional linear programming problem.

Discretize:

- $[0, R]$ into 5000 evenly space points.
- \mathcal{R} into 150 evenly spaced points.
- Λ into increments of 0.1×10^{-6}.

Petal-Shaped Occulters

- From Jacobi-Anger expansion we get:

\[
E(\rho, \phi) = 1 - \frac{2\pi}{i \lambda z} \int_0^R e^{\frac{i\pi}{\lambda z}(r^2 + \rho^2)} J_0\left(\frac{2\pi r \rho}{\lambda z}\right) A(r) r dr
\]

\[
- \sum_{k=1}^{\infty} \frac{2\pi (-1)^k}{i \lambda z} \left(\int_0^R e^{\frac{i\pi}{\lambda z}(r^2 + \rho^2)} J_k N \left(\frac{2\pi r \rho}{\lambda z}\right) \frac{\sin(\pi k A(r))}{\pi k} r dr \right)
\]

\[
\times \left(2 \cos(k N (\phi - \frac{\pi}{2}))\right)
\]

where \(N \) is the number of petals.

- For small \(\rho \), truncated summation well-approximates full sum.

- Truncated after 10 terms.

- \(\lambda \in [0.4, 1.1] \) microns.

- \(z = 72,000 \) km, \(R = 25 \) m.

- In angular terms, \(R/z = 0.073 \) arcseconds.
Our Solar System As Seen From Fomalhaut
Optimal vs. Sub-Optimal But Explicit Design

Size (tip-to-tip):
- Optimal: 50 meters
- Hypergaussian: 104 meters

Distance:
- Optimal: 72,000 km
- Hypergaussian: 150,000 km