NY Times, Hard Puzzle, Oct. 11 2019

Rules:

1. Each row must contain the numbers 1, 2, \ldots, 9.
2. Each column must contain the numbers 1, 2, \ldots, 9.
3. Each 3×3 block must contain the numbers 1, 2, \ldots, 9.
Rules:
1. Each row must contain the numbers 1, 2, \ldots, 9.
2. Each column must contain the numbers 1, 2, \ldots, 9.
3. Each 3 \times 3 block must contain the numbers 1, 2, \ldots, 9.
An Optimization Approach

Variables:

\[x_{i,j,k} = \begin{cases}
1 & \text{if number } k \text{ is in row } i, \text{ column } j, \\
0 & \text{otherwise.}
\end{cases} \]
An Optimization Approach

Variables:
\[x_{i,j,k} = \begin{cases}
1 & \text{if number } k \text{ is in row } i, \text{column } j, \\
0 & \text{otherwise.}
\end{cases} \]

Constraints:

- Each cell must contain a number:
 \[\sum_k x_{i,j,k} = 1 \quad \text{for } i = 1, \ldots, 9, \quad j = 1, \ldots, 9 \]

- Each row must contain each number:
 \[\sum_j x_{i,j,k} = 1 \quad \text{for } i = 1, \ldots, 9, \quad k = 1, \ldots, 9 \]

- Each column must contain each number:
 \[\sum_i x_{i,j,k} = 1 \quad \text{for } j = 1, \ldots, 9, \quad k = 1, \ldots, 9 \]

- Each 3×3 block must contain each number:
 \[\sum_{i=3i_0-2}^{3i_0} \sum_{j=3j_0-2}^{3j_0} x_{i,j,k} = 1 \quad \text{for } i_0 = 1, \ldots, 3, \quad j_0 = 1, \ldots, 3 \]
The *gray* cells have given values that we’re not allowed to change. Let’s denote those values by $P_{i,j}$.

One Last Constraint Set:

- For each “gray” cell:

 $x_{i,j}P_{i,j} = 1$
The *gray* cells have given values that we’re not allowed to change. Let’s denote those values by $P_{i,j}$.

One Last Constraint Set:

- For each “gray” cell:

 $$x_{i,j,P_{i,j}} = 1$$

Objective Function:

- We don’t need an objective function. Any feasible solution will do.
Here’s the code written in AMPL:

```AMPL
param P{1..9,1..9} default 0, integer, >= 0, <= 9;
var x {i in 1..9, j in 1..9, k in 1..9} >= 0, <= 1, integer;
minimize zero: 0;

s.t. val_sum {i in 1..9, j in 1..9}: sum {k in 1..9} x[i,j,k] = 1;
s.t. row_sum {i in 1..9, k in 1..9}: sum {j in 1..9} x[i,j,k] = 1;
s.t. col_sum {j in 1..9, k in 1..9}: sum {i in 1..9} x[i,j,k] = 1;
s.t. box_sum {i0 in 1..3, j0 in 1..3, k in 1..9}:
    sum {i in 3*i0-2..3*i0, j in 3*j0-2..3*j0} x[i,j,k] = 1;
s.t. fixed_vals {i in 1..9, j in 1..9: P[i,j] <> 0}: x[i,j,P[i,j]] = 1;
```
param P: 1 2 3 4 5 6 7 8 9 :=

1 . . 9 7 3
2 . . . 9 . . 1 . .
3 . . . 3 . 6 . . 8

4 9 . 6 . 4 . . .
5 2 . 3 . . 5 . . 6
6 5 7

7 . 3 . . . 2 . 8 5
8 8
9 1 ;

solve;

printf "\n";
for {i in 1..9} {
 if (i mod 3) = 1 then {printf "\n ";} else {printf " ";}
 for {j in 1..9} {
 if (j mod 3) = 1 then {printf " ";} else {printf " ";}
 printf " %1d", round(sum {k in 1..9} k*x[i,j,k]);
 }
 printf "\n";
}
printf "\n";
LOQO 7.03:
ignoring integrality of 198 variables
variables: non-neg 0, free 0, bdd 198, total 198
constraints: eq 212, ineq 0, ranged 0, total 212
nonzeros: A 792, Q 0
OPTIMAL SOLUTION FOUND

Times (seconds):
Input = 0.000791
Solve = 0.00512
Output = 0.000257

LOQO 7.03: optimal solution (15 iterations)
primal objective 0
dual objective -2.288607166e-08

6 2 9 7 8 1 5 4 3
3 8 7 9 5 4 1 6 2
5 4 1 3 2 6 9 7 8
9 5 6 2 4 7 8 3 1
2 7 3 8 1 5 4 9 6
4 1 8 6 3 9 2 5 7
7 3 4 1 9 2 6 8 5
8 9 2 5 6 3 7 1 4
1 6 5 4 7 8 3 2 9
Note that the solver used was LOQO.

This solver ignores integer constraints.

The solver found the correct answer.

Why?

Because the problem has a unique integer solution.

And that implies that the linear relaxation has the same unique solution.

For creators of sudoku problems, the problem must have a unique solution.

Hence, it is always possible to solve sudoku problems as linear optimization problems.
Creating Sudoku Problems

- Put the nine numbers 1, 2, ..., 9 at nine randomly chosen cells in the grid. Declare these cells as fixed.

- Solve the sudoku problem enforcing the integrality of the $x_{i,j,k}$'s and using a random objective function:

$$\text{minimize } \sum_{i=1}^{9} \sum_{j=1}^{9} \sum_{k=1}^{9} c_{i,j,k} x_{i,j,k}$$

where the $c_{i,j,k}$'s are i.i.d. random variables.

- Solve the sudoku problem again enforcing the integrality of the $x_{i,j,k}$'s but using the "opposite" of the above random objective function:

$$\text{maximize } \sum_{i=1}^{9} \sum_{j=1}^{9} \sum_{k=1}^{9} c_{i,j,k} x_{i,j,k}$$

- If the two solutions are the same, then we are done.

- If the two solutions differ, then pick one of the not-yet-fixed cells where the two solutions differ and fix the value to that given by the first (or second) solution.

- While not done, repeat the previous four steps.