Lecture 3
Interior Point Methods
and Nonlinear Optimization

Robert J. Vanderbei

April 16, 2012

Machine Learning Summer School
La Palma

http://www.princeton.edu/~rvdb
Example: Basis Pursuit Denoising
A trade-off between two objectives:
1. Least squares regression: \(\min \frac{1}{2} \|Ax - b\|_2^2 \).
2. Sparsity of the solution as encouraged by minimizing \(\sum_j |x_j| \).

Trade-off:
\[
\min \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1.
\]

Ideal value for \(\lambda \) is unknown.

May wish to try many different values hoping to find a good one.

Suggestion:
- Change least-squares regression to least-absolute-value regression,
- formulate the problem as a parametric linear programming problem, and
- solve it for all values of \(\lambda \) using the parametric simplex method.

This is an important problem in machine learning.
Interior-Point Methods
What Makes LP Hard?

Primal

maximize \(c^T x \)

subject to \(Ax + w = b \)

\(x, w \geq 0 \)

Dual

minimize \(b^T y \)

subject to \(A^T y - z = c \)

\(y, z \geq 0 \)

Complementarity Conditions

\(x_j z_j = 0 \quad j = 1, 2, \ldots, n \)

\(w_i y_i = 0 \quad i = 1, 2, \ldots, m \)
Can't write $xz = 0$. The product xz is undefined.

Instead, introduce a new notation:

$$
x = \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} \quad \implies \quad X = \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}
$$

Then the complementarity conditions can be written as:

$$
X Z e = 0 \\
W Y e = 0
$$
Optimality Conditions

\[Ax + w = b \]
\[A^T y - z = c \]
\[ZX e = 0 \]
\[WY e = 0 \]
\[w, x, y, z \geq 0 \]

Ignore (temporarily) the nonnegativities.

2n + 2m equations in 2n + 2m unknowns.

Solve’em.

Hold on. Not all equations are linear.

It is the nonlinearity of the complementarity conditions that makes LP fundamentally harder than solving systems of equations.
Since we’re ignoring nonnegativities, it’s best to replace complementarity with μ-complementarity:

\[
\begin{align*}
Ax + w &= b \\
A^T y - z &= c \\
ZXe &= \mu e \\
WYe &= \mu e
\end{align*}
\]

Start with an arbitrary (positive) initial guess: \(x, y, w, z\).

Introduce step directions: \(\Delta x, \Delta y, \Delta w, \Delta z\).

Write the above equations for \(x + \Delta x, y + \Delta y, w + \Delta w, \text{ and } z + \Delta z\):

\[
\begin{align*}
A(x + \Delta x) + (w + \Delta w) &= b \\
A^T(y + \Delta y) - (z + \Delta z) &= c \\
(Z + \Delta Z)(X + \Delta X)e &= \mu e \\
(W + \Delta W)(Y + \Delta Y)e &= \mu e
\end{align*}
\]
Rearrange with “delta” variables on left and drop nonlinear terms on left:

\[
\begin{align*}
A\Delta x + \Delta w &= b - Ax - w \\
A^T \Delta y - \Delta z &= c - A^T y + z \\
Z \Delta x + X \Delta z &= \mu e - Z X e \\
W \Delta y + Y \Delta w &= \mu e - W Y e
\end{align*}
\]

This is a \textit{linear} system of \(2m + 2n\) equations in \(2m + 2n\) unknowns.

Solve’em.

Dampen the step lengths, if necessary, to maintain positivity.

Step to a new point:

\[
\begin{align*}
x &\leftarrow x + \theta \Delta x \\
y &\leftarrow y + \theta \Delta y \\
w &\leftarrow w + \theta \Delta w \\
z &\leftarrow z + \theta \Delta z
\end{align*}
\]

(\(\theta\) is the scalar damping factor).
Recall equations

\[
\begin{align*}
A\Delta x + \Delta w &= b - Ax - w \\
A^T\Delta y - \Delta z &= c - A^Ty + z \\
Z\Delta x + X\Delta z &= \mu e - ZXe \\
W\Delta y + Y\Delta w &= \mu e - WYe
\end{align*}
\]

Solve for Δz

\[
\Delta z = X^{-1}(\mu e - ZXe - Z\Delta x)
\]

and for Δw

\[
\Delta w = Y^{-1}(\mu e - WYe - W\Delta y).
\]

Eliminate Δz and Δw from first two equations:

\[
\begin{align*}
A\Delta x - Y^{-1}W\Delta y &= b - Ax - \mu Y^{-1}e \\
A^T\Delta y + X^{-1}Z\Delta x &= c - A^Ty + \mu X^{-1}e
\end{align*}
\]
Pick a smaller value of μ for the next iteration.

Repeat from beginning until current solution satisfies, within a tolerance, optimality conditions:

primal feasibility $b - Ax - w = 0$.

dual feasibility $c - A^T y + z = 0$.

duality gap $b^T y - c^T x = 0$.

Theorem.

- Primal infeasibility gets smaller by a factor of $1 - \theta$ at every iteration.
- Dual infeasibility gets smaller by a factor of $1 - \theta$ at every iteration.
- If primal and dual are feasible, then duality gap decreases by a factor of $1 - \theta$ at every iteration (if $\mu = 0$, slightly slower convergence if $\mu > 0$).
Hard/impossible to “do” an interior-point method by hand.

Yet, easy to program on a computer (solving large systems of equations is routine).

LOQO implements an interior-point method.

Setting option loqo_options ’verbose=2’ in AMPL produces the following “typical” output:
LOQO Output

variables: non-neg 1350, free 0, bdd 0, total 1350
constraints: eq 146, ineq 0, ranged 0, total 146
nonzeros: A 5288, Q 0
nonzeros: L 7953, arith_ops 101444

<table>
<thead>
<tr>
<th>Iter</th>
<th>Primal</th>
<th>Dual</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obj Value</td>
<td>Infeas</td>
<td>Obj Value</td>
</tr>
<tr>
<td>1</td>
<td>-7.8000000e+03</td>
<td>1.55e+03</td>
<td>5.5076028e-01</td>
</tr>
<tr>
<td>2</td>
<td>2.6725737e+05</td>
<td>7.84e+01</td>
<td>1.0917132e+00</td>
</tr>
<tr>
<td>3</td>
<td>1.1880365e+05</td>
<td>3.92e+00</td>
<td>4.5697310e-01</td>
</tr>
<tr>
<td>4</td>
<td>6.7391043e+03</td>
<td>2.22e-01</td>
<td>7.2846138e-01</td>
</tr>
<tr>
<td>5</td>
<td>9.5202841e+02</td>
<td>3.12e-02</td>
<td>5.4810461e+00</td>
</tr>
<tr>
<td>6</td>
<td>2.1095320e+02</td>
<td>6.03e-03</td>
<td>2.7582307e+01</td>
</tr>
<tr>
<td>7</td>
<td>8.5669013e+01</td>
<td>1.36e-03</td>
<td>4.2343105e+01</td>
</tr>
<tr>
<td>8</td>
<td>5.8494756e+01</td>
<td>3.42e-04</td>
<td>4.6750024e+01</td>
</tr>
<tr>
<td>9</td>
<td>5.1228667e+01</td>
<td>8.85e-05</td>
<td>4.7875326e+01</td>
</tr>
<tr>
<td>10</td>
<td>4.9466277e+01</td>
<td>2.55e-05</td>
<td>4.8617380e+01</td>
</tr>
<tr>
<td>11</td>
<td>4.8792989e+01</td>
<td>1.45e-06</td>
<td>4.8736603e+01</td>
</tr>
<tr>
<td>12</td>
<td>4.8752154e+01</td>
<td>7.26e-08</td>
<td>4.8749328e+01</td>
</tr>
<tr>
<td>13</td>
<td>4.8750108e+01</td>
<td>3.63e-09</td>
<td>4.8749966e+01</td>
</tr>
<tr>
<td>14</td>
<td>4.8750005e+01</td>
<td>1.81e-10</td>
<td>4.8749998e+01</td>
</tr>
<tr>
<td>15</td>
<td>4.8750000e+01</td>
<td>9.07e-12</td>
<td>4.8750000e+01</td>
</tr>
</tbody>
</table>

OPTIMAL SOLUTION FOUND
A Generalizable Framework

Start with an optimization problem—in this case LP:

\[
\begin{align*}
\text{maximize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b \\
& \quad x \geq 0
\end{align*}
\]

Use slack variables to make all inequality constraints into nonnegativities:

\[
\begin{align*}
\text{maximize} & \quad c^T x \\
\text{subject to} & \quad Ax + w = b \\
& \quad x, w \geq 0
\end{align*}
\]

Replace nonnegativity constraints with \textit{logarithmic barrier terms} in the objective:

\[
\begin{align*}
\text{maximize} & \quad c^T x + \mu \sum_j \log x_j + \mu \sum_i \log w_i \\
\text{subject to} & \quad Ax + w = b
\end{align*}
\]
Incorporate the equality constraints into the objective using *Lagrange multipliers*:

\[
L(x, w, y) = c^T x + \mu \sum_j \log x_j + \mu \sum_i \log w_i + y^T (b - Ax - w)
\]

Set derivatives to zero:

\[
c + \mu X^{-1} e - A^T y = 0 \quad \text{(deriv wrt } x) \\
\mu W^{-1} e - y = 0 \quad \text{(deriv wrt } w) \\
b - Ax - w = 0 \quad \text{(deriv wrt } y)
\]

Introduce *dual complementary variables*:

\[
z = \mu X^{-1} e
\]

Rewrite system:

\[
c + z - A^T y = 0 \\
XZe = \mu e \\
WYe = \mu e \\
b - Ax - w = 0
\]
Logarithmic Barrier Functions

Plots of $\mu \log x$ for various values of μ:
Lagrange Multipliers

maximize \(f(x) \)
subject to \(g(x) = 0 \)

maximize \(f(x) \)
subject to \(g_1(x) = 0 \)
\(g_2(x) = 0 \)
Nonlinear Optimization
Outline

• Algorithm
 – Basic Paradigm
 – Step-Length Control
 – Diagonal Perturbation
The Interior-Point Algorithm
Introduce Slack Variables

• Start with an optimization problem—for now, the simplest NLP:

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad h_i(x) \geq 0, \quad i = 1, \ldots, m
\end{align*}
\]

• Introduce slack variables to make all inequality constraints into nonnegativities:

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad h(x) - w = 0, \\
& \quad w \geq 0
\end{align*}
\]
Associated Log-Barrier Problem

- Replace nonnegativity constraints with logarithmic barrier terms in the objective:

\[
\begin{align*}
\text{minimize} & \quad f(x) - \mu \sum_{i=1}^{m} \log(w_i) \\
\text{subject to} & \quad h(x) - w = 0
\end{align*}
\]
First-Order Optimality Conditions

• Incorporate the equality constraints into the objective using Lagrange multipliers:

\[L(x, w, y) = f(x) - \mu \sum_{i=1}^{m} \log(w_i) - y^T(h(x) - w) \]

• Set all derivatives to zero:

\[\nabla f(x) - \nabla h(x)^T y = 0 \]
\[-\mu W^{-1} e + y = 0 \]
\[h(x) - w = 0 \]
Symmetrize Complementarity Conditions

- Rewrite system:

\[
\nabla f(x) - \nabla h(x)^T y = 0 \\
WYe = \mu e \\
h(x) - w = 0
\]
Apply Newton’s Method

• Apply Newton’s method to compute search directions, Δx, Δw, Δy:

$$
\begin{bmatrix}
H(x, y) & 0 & -A(x)^T \\
0 & Y & W \\
A(x) & -I & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta w \\
\Delta y
\end{bmatrix}
=
\begin{bmatrix}
-\nabla f(x) + A(x)^T y \\
\mu e - WYe \\
-h(x) + w
\end{bmatrix}.
$$

Here,

$$H(x, y) = \nabla^2 f(x) - \sum_{i=1}^{m} y_i \nabla^2 h_i(x)$$

and

$$A(x) = \nabla h(x)$$

• Note: $H(x, y)$ is positive semidefinite if f is convex, each h_i is concave, and each $y_i \geq 0$.
• Use second equation to solve for Δw. Result is the reduced KKT system:

\[
\begin{bmatrix}
-H(x, y) & A^T(x) \\
A(x) & WY^{-1}
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix}
=
\begin{bmatrix}
\nabla f(x) - A^T(x)y \\
-h(x) + \mu Y^{-1}e
\end{bmatrix}
\]

• Iterate:

\[
x^{(k+1)} = x^{(k)} + \alpha^{(k)} \Delta x^{(k)}
\]
\[
w^{(k+1)} = w^{(k)} + \alpha^{(k)} \Delta w^{(k)}
\]
\[
y^{(k+1)} = y^{(k)} + \alpha^{(k)} \Delta y^{(k)}
\]
Nonlinear Programming (NLP)

minimize \(f(x) \)
subject to \(h_i(x) = 0, \quad i \in \mathcal{E}, \)
\(h_i(x) \geq 0, \quad i \in \mathcal{I}. \)

NLP is \textit{convex} if

\begin{itemize}
 \item \(h_i \)'s in equality constraints are affine;
 \item \(h_i \)'s in inequality constraints are concave;
 \item \(f \) is convex;
\end{itemize}

NLP is \textit{smooth} if

\begin{itemize}
 \item All are twice continuously differentiable.
\end{itemize}
For convex *nonquadratic* optimization, it does not suffice to choose the steplength α simply to maintain positivity of nonnegative variables.

- Consider, e.g., minimizing
 \[f(x) = (1 + x^2)^{1/2}. \]
- The iterates can be computed explicitly:
 \[x^{(k+1)} = -(x^{(k)})^3. \]
- Converges if and only if $|x| \leq 1$.
- Reason: away from 0, function is too linear.
A *filter-type* method is used to guide the choice of steplength α. Define the *dual normal matrix*:

$$N(x, y, w) = H(x, y) + A^T(x)W^{-1}YA(x).$$

Theorem Suppose that $N(x, y, w)$ is positive definite.

1. If current solution is primal infeasible, then $(\Delta x, \Delta w)$ is a descent direction for the infeasibility $\|h(x) - w\|$.
2. If current solution is primal feasible, then $(\Delta x, \Delta w)$ is a descent direction for the barrier function.

Shorten α until $(\Delta x, \Delta w)$ is a descent direction for either the infeasibility or the barrier function.
Nonconvex Optimization: Diagonal Perturbation

• If $H(x, y)$ is not positive semidefinite then $N(x, y, w)$ might fail to be positive definite.
• In such a case, we lose the descent properties given in previous theorem.
• To regain those properties, we perturb the Hessian: $\tilde{H}(x, y) = H(x, y) + \lambda I$.
• And compute search directions using \tilde{H} instead of H.

Notation: let \tilde{N} denote the dual normal matrix associated with \tilde{H}.

Theorem If \tilde{N} is positive definite, then $(\Delta x, \Delta w, \Delta y)$ is a descent direction for

1. the primal infeasibility, $\|h(x) - w\|$;
2. the noncomplementarity, $w^T y$.
Notes:

- *Not necessarily* a descent direction for *dual infeasibility*.

- A *line search* is performed to find a value of λ within a factor of 2 of the smallest permissible value.
Theorem If the problem is convex and and the current solution is not optimal and ..., then for any slack variable, say \(w_i \), we have \(w_i = 0 \) implies \(\Delta w_i \geq 0 \).

- To paraphrase: for convex problems, as slack variables get small they tend to get large again. This is an antijamming theorem.
- A recent example of Wächter and Biegler shows that for nonconvex problems, jamming really can occur.
- Recent modification:
 - if a slack variable gets small and
 - its component of the step direction contributes to making a very short step,
 - then increase this slack variable to the average size of the variables the “mainstream” slack variables.
- This modification corrects all examples of jamming that we know about.
Modifications for General Problem Formulations

• Bounds, ranges, and free variables are all treated implicitly as described in *Linear Programming: Foundations and Extensions (LP:F&E)*.

• Net result is following reduced KKT system:

\[
\begin{bmatrix}
-(H(x, y) + D) & A^T(x) \\
A(x) & E
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix}
= \begin{bmatrix}
\Phi_1 \\
\Phi_2
\end{bmatrix}
\]

• Here, \(D \) and \(E \) are *positive definite* diagonal matrices.

• Note that \(D \) helps reduce frequency of diagonal perturbation.

• Choice of barrier parameter \(\mu \) and initial solution, if none is provided, is described in the paper.

• Stopping rules, matrix reordering heuristics, etc. are as described in *LP:F&E*.
AMPL Info

• The language is called AMPL, which stands for A Mathematical Programming Language.

• The “official” document describing the language is a book called “AMPL” by Fourer, Gay, and Kernighan. Amazon.com sells it for $78.01.

• There are also online tutorials:
 – http://www2.isye.gatech.edu/~jswann/teaching/AMPLTutorial.pdf
 – Google: “AMPL tutorial” for several more.
NEOS Info

NEOS is the *Network Enabled Optimization Server* supported by our federal government and located at *Argonne National Lab*.

To submit an AMPL model to NEOS...

- visit http://www.neos-server.org/neos/,
- click on the icon,
- scroll down to the *Nonlinearly Constrained Optimization* list,
- click on LOQO [AMPL input],
- scroll down to *Model File:*,
- click on *Choose File*,
- select a file from your computer that contains an AMPL model,
- scroll down to *e-mail address:*,
- type in your email address, and
- click *Submit to NEOS*.

Piece of cake!
The Homogeneous Self-Dual Method
The Homogeneous Self-Dual Problem

Primal-Dual Pair

maximize \(c^T x \) subject to \(Ax \leq b \) \(x \geq 0 \)

minimize \(b^T y \) subject to \(A^T y \geq c \) \(y \geq 0 \)

Homogeneous Self-Dual Problem

maximize \(0 \) subject to \(-A^T y + c\phi \leq 0 \)
\(Ax \geq 0 \)
\(-c^T x + b^T y \leq 0 \)
\(x, y, \phi \geq 0 \)
In Matrix Notation

maximize \[0 \]
subject to
\[
\begin{bmatrix}
0 & -A^T & c \\
A & 0 & -b \\
-c^T & b^T & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\phi
\end{bmatrix}
\leq
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]
\[x, y, \phi \geq 0. \]

HSD is self-dual (constraint matrix is skew symmetric).

HSD is feasible \((x = 0, y = 0, \phi = 0)\).

HSD is homogeneous—i.e., multiplying a feasible solution by a positive constant yields a new feasible solution.

Any feasible solution is optimal.

If \(\phi\) is a null variable, then either primal or dual is infeasible (see text).
Theorem. Let \((x, y, \phi)\) be a solution to HSD. If \(\phi > 0\), then

- \(x^* = x/\phi\) is optimal for primal, and
- \(y^* = y/\phi\) is optimal for dual.

Proof.

\(x^*\) is primal feasible—obvious.
\(y^*\) is dual feasible—obvious.

Weak duality theorem implies that \(c^T x^* \leq b^T y^*\).

3rd HSD constraint implies reverse inequality.

Primal feasibility, plus dual feasibility, plus no gap implies optimality.
In New Notation:

maximize 0
subject to \(Ax + z = 0 \)
\(x, z \geq 0 \)
More Notation

Infeasibility: \(\rho(x, z) = Ax + z \)
Complementarity: \(\mu(x, z) = \frac{1}{n} x^T z \)

Nonlinear System

\[
A(x + \Delta x) + (z + \Delta z) = \delta(Ax + z) \\
(X + \Delta X)(Z + \Delta Z)e = \delta \mu(x, z)e
\]

Linearized System

\[
A\Delta x + \Delta z = -(1 - \delta) \rho(x, z) \\
Z \Delta x + X \Delta z = \delta \mu(x, z)e - XZe
\]
Algorithm

Solve linearized system for $(\Delta x, \Delta z)$.

Pick step length θ.

Step to a new point:

$$\bar{x} = x + \theta \Delta x, \quad \bar{z} = z + \theta \Delta z.$$

Even More Notation

$$\bar{\rho} = \rho(\bar{x}, \bar{z}), \quad \bar{\mu} = \mu(\bar{x}, \bar{z})$$
Theorem 2

1. $\Delta z^T \Delta x = 0$.

2. $\bar{\rho} = (1 - \theta + \theta \delta) \rho$.

3. $\bar{\mu} = (1 - \theta + \theta \delta) \mu$.

4. $\bar{X} \bar{Z} e - \bar{\mu} e = (1 - \theta)(X Z e - \mu e) + \theta^2 \Delta X \Delta Z e$.

Proof.

1. Tedious but not hard (see text).

2.

 \[
 \begin{align*}
 \bar{\rho} & = A(x + \theta \Delta x) + (z + \theta \Delta z) \\
 & = Ax + z + \theta(A \Delta x + \Delta z) \\
 & = \rho - \theta(1 - \delta) \rho \\
 & = (1 - \theta + \theta \delta) \rho.
 \end{align*}
 \]
3.

\[\bar{x}^T \bar{z} = (x + \theta \Delta x)^T(z + \theta \Delta z) \]
\[= x^T z + \theta(z^T \Delta x + x^T \Delta z) + \theta^2 \Delta x^T \Delta z \]
\[= x^T z + \theta e^T(\delta \mu e - XZe) \]
\[= (1 - \theta + \theta \delta)x^T z. \]

Now, just divide by \(n \).

4.

\[\bar{X} \bar{Z} e - \bar{\mu} e = (X + \theta \Delta X)(Z + \theta \Delta Z)e - (1 - \theta + \theta \delta)\mu e \]
\[= XZe - \mu e + \theta(X \Delta z + Z \Delta x + (1 - \delta)\mu e) + \theta^2 \Delta X \Delta Ze \]
\[= (1 - \theta)(XZe - \mu e) + \theta^2 \Delta X \Delta Ze. \]
Neighborhoods of \(\{ (x, z) > 0 : x_1 z_1 = x_2 z_2 = \cdots = x_n z_n \} \)

\[
\mathcal{N}(\beta) = \{ (x, z) > 0 : \| X Z e - \mu(x, z) e \| \leq \beta \mu(x, z) \}
\]

Note: \(\beta < \beta' \) implies \(\mathcal{N}(\beta) \subset \mathcal{N}(\beta') \).

Predictor-Corrector Algorithm

Odd Iterations–Predictor Step

Assume \((x, z) \in \mathcal{N}(1/4) \).

Compute \((\Delta x, \Delta z) \) using \(\delta = 0 \).

Compute \(\theta \) so that \((\bar{x}, \bar{z}) \in \mathcal{N}(1/2) \).

Even Iterations–Corrector Step

Assume \((x, z) \in \mathcal{N}(1/2) \).

Compute \((\Delta x, \Delta z) \) using \(\delta = 1 \).

Put \(\theta = 1 \).
Predictor-Corrector Algorithm

In Complementarity Space

Let

\[u_j = x_j z_j \quad j = 1, 2, \ldots, n. \]
Well-Definedness of Algorithm

Must check that preconditions for each iteration are met.

Technical Lemma.

1. If $\delta = 0$, then $\|\Delta X \Delta Z e\| \leq \frac{n}{2} \mu$.

2. If $\delta = 1$ and $(x, z) \in \mathcal{N}(\beta)$, then $\|\Delta X \Delta Z e\| \leq \frac{\beta^2}{1-\beta} \mu / 2$.

Proof. Tedious *and* tricky. See text.
Theorem.

1. After a predictor step, \((\bar{x}, \bar{z}) \in \mathcal{N}(1/2)\) and \(\bar{\mu} = (1 - \theta)\mu\).
2. After a corrector step, \((\bar{x}, \bar{z}) \in \mathcal{N}(1/4)\) and \(\bar{\mu} = \mu\).

Proof.

1. \((\bar{x}, \bar{z}) \in \mathcal{N}(1/2)\) by definition of \(\theta\).
 \[
 \bar{\mu} = (1 - \theta)\mu \text{ since } \delta = 0.
 \]

2. \(\theta = 1\) and \(\beta = 1/2\). Therefore,
 \[
 \|\bar{X}\bar{Z}e - \bar{\mu}e\| = \|\Delta X \Delta Z e\| \leq \mu/4.
 \]
 Need to show also that \((\bar{x}, \bar{z}) > 0\). Intuitively clear (see earlier picture) but proof is tedious. See text.
Complexity Analysis

Progress toward optimality is controlled by the stepsize θ.

Theorem. In predictor steps, $\theta \geq \frac{1}{2\sqrt{n}}$.

Proof.

Consider taking a step with step length $t \leq 1/2\sqrt{n}$:

$$x(t) = x + t\Delta x, \quad z(t) = z + t\Delta z.$$

From earlier theorems and lemmas,

$$\|X(t)Z(t)e - \mu(t)e\| \leq (1 - t)\|XZe - \mu e\| + t^2\|\Delta X\Delta Ze\|$$

$$\leq (1 - t)\frac{\mu}{4} + t^2\frac{n\mu}{2}$$

$$\leq (1 - t)\frac{\mu}{4} + \frac{\mu}{8}$$

$$\leq (1 - t)\frac{\mu}{4} + (1 - t)\frac{\mu}{4}$$

$$= \frac{\mu(t)}{2}.$$

Therefore $(x(t), z(t)) \in \mathcal{N}(1/2)$ which implies that $\theta \geq 1/2\sqrt{n}$.
Since
$$\mu^{(2k)} = (1 - \theta^{(2k-1)})(1 - \theta^{(2k-3)}) \cdots (1 - \theta^{(1)})\mu^{(0)}$$
and $\mu^{(0)} = 1$, we see from the previous theorem that
$$\mu^{(2k)} \leq \left(1 - \frac{1}{2\sqrt{n}}\right)^k.$$

Hence, to get a small number, say 2^{-L}, as an upper bound for $\mu^{(2k)}$ it suffices to pick k so that:
$$\left(1 - \frac{1}{2\sqrt{n}}\right)^k \leq 2^{-L}.$$

This inequality is implied by the following simpler one:
$$k \geq 2 \log(2)L\sqrt{n}.$$

Since the number of iterations is $2k$, we see that $4\log(2)L\sqrt{n}$ iterations will suffice to make the final value of μ be less than 2^{-L}.

Of course,
$$\rho^{(k)} = \mu^{(k)}\rho^{(0)}$$
so the same bounds guarantee that the final infeasibility is small too.
Back to Original Primal-Dual Setting

Just a final remark: If primal and dual problems are feasible, then algorithm will produce a solution to HSD with $\phi > 0$ from which a solution to original problem can be extracted. See text for details.