
Fast Fourier Optimization

and Related Sparsifications

Robert J. Vanderbei

2014 June 24

ONR Grantees Meeting
MIT

http://www.princeton.edu/∼rvdb

http://www.princeton.edu/~rvdb

The Plan...

Introduction

Fourier Transform

Fourier Optimization

Example from High-Contrast Imaging

Fast-Fourier Optimization — Sparsifying the Constraint Matrix

Kronecker Compressed Sensing — Sparsifying the Constraint Matrix

The Plan...

Introduction

Fourier Transform

Fourier Optimization

Example from High-Contrast Imaging

Fast-Fourier Optimization — Sparsifying the Constraint Matrix

Kronecker Compressed Sensing — Sparsifying the Constraint Matrix

Introduction

Applications

• Antenna Array Synthesis and Design

• Telescope Design for High-Contrast Imaging

• Precision Matrix Estimation

• Kronecker Compressed Sensing

• MRI Imaging

Fast Fourier Optimization

Fourier Optimization =⇒ dense constraint matrix

Fast Fourier Optimization =⇒ sparse constraint matrix

1

Fourier Optimization

maximize

∫
λ(dx)f (x)

subject to

∫
µ(η, dξ)f̂ (ξ) ≤ β(η), η ∈ H,∫
ν(y, dx)f (x)≤ b(y), y ∈ Y ,

where

• f : Rd 7→ R represents (a continuum of) decision variables,

• λ is a given measure on Rd,

• µ and ν are given (real-valued) kernels on Cd,

• the sets H and Y are given finite or infinite (usually uncountably) “index” sets,

• β and b are given functions, and

• f̂ is the d-dimensional Fourier transform:

f̂ (ξ) =

∫
Rd

e2πiξTxf (x)dx

2

Comments

Often, the constraints are simple upper/lower bounds on f̂ and f .

In the world of optimization, x denotes the variables. Here, x denotes the indices for the
variables f (·).

We implicitly assume that the kernel µ returns a real-valued function.
If, for example, we have µ(η,−dξ) = µ(η, dξ) for all ξ, then the integral reduces to an
integral of real parts and hence is real.

The “number” of variables is equal to the cardinality of the union of the supports of λ and
the kernel µ. This set is usually uncountably infinite.

The “number” of constraints is equal to the cardinality of H plus the cardinality of Y .

The Fourier transform is a linear operator.

In general, the problem is an infinite dimensional linear programming problem.

Usually, d = 1 or d = 2. Even when d = 1, the problem is infinite dimensional.

3

Misconceptions

EE: The Fourier transform is well understood. The best algorithm for computing it is the
so-called fast Fourier transform. Excellent codes are available, such as fftw. Just call
one of these state-of-the-art codes. There is nothing new to be done here.

Rebuttal: Efficient algorithms for linear programming require more than an oracle
that computes constraint function values. They also need the gradients. To work
with the full Jacobian matrix is to loose all of the computational efficiency of the
fast Fourier transform.

PS. The fast Fourier transform is not an algorithm—it is a concept that leads to
algorithms.

OR: The range of problems that fit the Fourier Optimization paradigm is very limited. There
might be some new research, but its applications are few.

Rebuttal: Almost every problem in electrical engineering involves Fourier trans-
forms. The few problem areas mentioned earlier are just the tip of an enormous
iceberg.

4

Misconceptions

EE: The Fourier transform is well understood. The best algorithm for computing it is the
so-called fast Fourier transform. Excellent codes are available, such as fftw. Just call
one of these state-of-the-art codes. There is nothing new to be done here.

Rebuttal: Efficient algorithms for linear programming require more than an oracle
that computes constraint function values. They also need the gradients. To
work with the full Jacobian matrix of the Fourier transform is to loose all of the
computational efficiency of the fast Fourier transform.

PS. The fast Fourier transform is not an algorithm—it is a concept that leads to
algorithms.

OR: The range of problems that fit the Fourier Optimization paradigm is very limited. There
might be some new research, but its applications are few.

Rebuttal: Almost every problem in electrical engineering involves Fourier trans-
forms. The few problem areas mentioned earlier are just the tip of an enormous
iceberg.

5

The Plan...

Introduction

Fourier Transform

Fourier Optimization

Example from High-Contrast Imaging

Fast-Fourier Optimization — Sparsifying the Constraint Matrix

Kronecker Compressed Sensing — Sparsifying the Constraint Matrix

Fourier Transform

Fourier Transform:

f̂ (ξ) =

∫ ∞
−∞

e2πixξf (x)dx, ξ ∈ R.

Curse of dimensionality: An optimization problem whose variables are a function f (x), x ∈ R,
and whose constraints are given on the Fourier transform is an∞×∞-dimensional problem.

Some “tricks” are used to address this curse.

A first step is to assume (as is often physically realistic) that the function f has compact
support, say, on [0, 1]:

f̂ (ξ) =

∫ 1

0

e2πixξf (x)dx, ξ ∈ R.

The Nyquist-Shannon Sampling Theorem then says that the Fourier transform on [0, 1] is
completely characterized by its values at ξ = j∆ξ, j = 0, 1, 2, . . ., and ∆ξ = 1.

A second step is to discretize the integral:

f̂j =
n−1∑
k=0

e2πi k∆x j∆ξ fk ∆x, 0 ≤ j < m.

Complexity: O(mn)

6

Fast-Fourier Transform (FFT)

Recall one-dimensional Fourier transform:

f̂ (ξ) =

∫ 1

0

e2πixξf (x)dx.

and its discrete approximation:

f̂j =
n−1∑
k=0

e2πi k∆x j∆ξ fk ∆x, 0 ≤ j < m.

Suppose that n and m can be factored:

n = n0n1 and m = m0m1.

If we now decompose our sequencing indices k and j into

k = n0k1 + k0 and j = m0j1 + j0,

we get

f̂j0,j1 =
n0−1∑
k0=0

n1−1∑
k1=0

e2πin0k1∆xm0j1∆ξ e2πin0k1∆xj0∆ξ e2πik0∆x(m0j1+j0)∆ξ fk0,k1∆x.

7

Fast-Fourier Transform (FFT)

f̂j0,j1 =
n0−1∑
k0=0

n1−1∑
k1=0

e2πin0k1∆xm0j1∆ξ e2πin0k1∆xj0∆ξ e2πik0∆x(m0j1+j0)∆ξ fk0,k1∆x.

We want the first exponential factor to evaluate to one. To make that happen, we assume
that n0m0∆x∆ξ is an integer. With the first exponential factor gone, we can write down a
two-step algorithm

gj0,k0 =
n1−1∑
k1=0

e2πin0k1∆xj0∆ξ fk0,k1∆x, 0 ≤ j0 < m0, 0 ≤ k0 < n0,

f̂j0,j1 =
n0−1∑
k0=0

e2πik0∆x(m0j1+j0)∆ξgj0,k0, 0 ≤ j0 ≤ m0, 0 ≤ j1 ≤ m1.

8

Complexity

The number of multiply/adds required for this two-step algorithm is

n0n1m0 + m0m1n0 = mn

(
1

m1

+
1

n1

)
.

If m ≈ n and m1 ≈ n1 ≈
√
n, the complexity simplifies to

2n
√
n.

Compared to the one-step algorithm, which takes n2 multiply/adds, this two-step algorithm
gives an improvement of a factor of

√
n/2. Also, if m is much smaller than n, we get further

improvement over the full n× n case.

Of course, if m0,m1, n0, and n1 can be further factored, then this two-step algorithm can
be extended recursively.

For the FFT, m and n are chosen to be a power of 2. In this case, the recursively applied
algorithm is an n log2 n algorithm.

9

The Plan...

Introduction

Fourier Transform

Fourier Optimization

Example from High-Contrast Imaging

Fast-Fourier Optimization — Sparsifying the Constraint Matrix

Kronecker Compressed Sensing — Sparsifying the Constraint Matrix

Fourier Optimization

optimize
n−1∑
k=0

ckfk

subject to f̂j =
n−1∑
k=0

e2πi k∆x j∆ξ fk ∆x, j ∈ J

|f̂j| ≤ ε, j ∈ J .

The set J is often “small”.

The “magnitude” of a complex number x + iy is
√
x2 + y2.

Hence, the problem, as formulated, is a second-order cone programming (SOCP) problem.

Often symmetry implies that f̂ is real (i.e., the imaginary part vanishes).
In this case, it is easy to convert the SOCP to a linear programming (LP) problem.

The Jacobian of the linear operator defining the discretized Fourier transform is a dense
m× n-matrix.

10

Fast Fourier Optimization (Oracle Version)

optimize
∑
k

ckfk

subject to f̂ = fftw(f)

|f̂j| ≤ ε, j ∈ J .

fftw stands for Fastest Fourier Transform in the West.
It is regarded as the fastest (and most general) of the fft algorithms available.

Problem is still a linear programming problem (or SOCP depending).

But, the routine fftw (and other similar oracles) do not provide the Jacobian matrix of first
derivatives.

Hence, this formulation can only be solved using derivative-free optimization methods.

Furthermore, it may be serious overkill to compute f̂j for all j = 1, 2, . . . , n.

11

Fast Fourier Optimization (A Better Way)

optimize
n−1∑
k=0

ckfk

subject to gj0,k0 =
n1−1∑
k1=0

e2πin0k1∆xj0∆ξ fk0,k1∆x, 0 ≤ j0 < m0, 0 ≤ k0 < n0,

f̂j0,j1 =
n0−1∑
k0=0

e2πik0∆x(m0j1+j0)∆ξgj0,k0, 0 ≤ j0 ≤ m0, 0 ≤ j1 ≤ m1,

|f̂j0,j1| ≤ ε, j = m0j1 + j0 ∈ J .

The constraint matrix A is sparse (details later).

As with FFT, this “factorization” can be continued.

12

The Plan...

Introduction

Fourier Transform

Fourier Optimization

Example from High-Contrast Imaging

Fast-Fourier Optimization — Sparsifying the Constraint Matrix

Kronecker Compressed Sensing — Sparsifying the Constraint Matrix

An Example from Optics (d = 2)

A key problem in high-contrast imaging is to maximize light through an apodized circular
aperture subject to the constraint that virtually no light reaches a given dark zone D in the
image:

maximize

∫∫
�

f (x, y)dxdy
(

= f̂ (0, 0)
)

subject to
∣∣∣f̂ (ξ, η)

∣∣∣≤ ε f̂ (0, 0), (ξ, η) ∈ D,
f (x, y) = 0, x2 + y2 > 1,

0 ≤ f (x, y) ≤ 1, for all x, y.

Here, ε is a small positive constant (on the order of 10−5).

In general, the Fourier transform f̂ is complex valued.

As formulated, this optimization problem has a linear objective function and both linear and
second-order cone constraints.

Hence, a discretized version can be solved (to a global optimum).

14

Exploiting Symmetry

Assuming that the apodization can be symmetric with respect to reflection about both axes,
i.e., f (x, y) = f (−x, y) = f (x,−y) = f (−x,−y), the Fourier transform can be written as

f̂ (ξ, η) = 4

∫ 1

0

∫ 1

0

cos(2πxξ) cos(2πyη)f (x, y)dxdy.

In this case, the Fourier transform is real and so the second-order cone constraints can be
replaced with a pair of inequalities,

−ε f̂ (0, 0) ≤ f̂ (ξ, η) ≤ ε f̂ (0, 0),

making the problem an infinite dimensional linear programming problem.

Curse of Dimensionality: Number of variables/constraints =∞

15

Exploiting Symmetry

Assuming that the apodization can be symmetric with respect to reflection about both axes,
i.e., f (x, y) = f (−x, y) = f (x,−y) = f (−x,−y), the Fourier transform can be written as

f̂ (ξ, η) = 4

∫ 1

0

∫ 1

0

cos(2πxξ) cos(2πyη)f (x, y)dxdy.

In this case, the Fourier transform is real and so the second-order cone constraints can be
replaced with a pair of inequalities,

−ε f̂ (0, 0) ≤ f̂ (ξ, η) ≤ ε f̂ (0, 0),

making the problem an infinite dimensional linear programming problem.

Curse of Dimensionality: No! It’s because d = 2 and ∞2 �∞1.

16

Discretization

Consider a two-dimensional Fourier transform

f̂ (ξ, η) = 4

∫ 1

0

∫ 1

0

cos(2πxξ) cos(2πyη)f (x, y)dxdy.

Its discrete approximation can be computed as

f̂j1,j2 = 4
n∑

k2=1

n∑
k1=1

cos(2πxk1ξj1) cos(2πyk2ηj2)fk1,k2∆x∆y, 1 ≤ j1, j2 ≤ m,

where
xk = (k − 1/2)∆x, 1 ≤ k ≤ n,

yk = (k − 1/2)∆y, 1 ≤ k ≤ n,

ξj , 1 ≤ j ≤ m,

ηj , 1 ≤ j ≤ m,

fk1,k2 = f (xk1, yk2), 1 ≤ k1, k2 ≤ n,

f̂j1,j2 ≈ f̂ (ξj1, ηj2), 1 ≤ j1, j2 ≤ m.

Complexity: m2n2.

17

A Trivial (but Smart!) Idea

The obvious brute force calculation requires m2n2 operations.

However, we can “factor” the double sum into a nested pair of sums.

Introducing new variables to represent the inner sum, we get:

gj1,k2 = 2
n∑

k1=1

cos(2πxk1ξj1)fk1,k2∆x, 1 ≤ j1 ≤ m, 1 ≤ k2 ≤ n,

f̂j1,j2 = 2
n∑

k2=1

cos(2πyk2ηj2)gj1,k2∆y, 1 ≤ j1, j2 ≤ m,

Formulated this way, the calculation requires only mn2 + m2n operations.

This trick is exactly the same idea that underlies the fast Fourier Transform.

18

Brute Force vs Clever Approach

On the following page two formulations of this problem in ampl are shown.

On the left is the version expressed in the straightforward one-step manner.

On the right is the ampl model for the same problem but with the Fourier transform
expressed as a pair of transforms—let’s call this the two-step process.

The dark zone D is a pair of sectors of an annulus with inner radius 4 and outer radius 20.

Except for different discretizations, the two models produce the same result.

19

Optimal Solution

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20 −10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Left. The optimal apodization found by either of the models shown on previous slide.

Center. Plot of the star’s image (using a linear stretch).

Right. Logarithmic plot of the star’s image (black = 10−10).

Note:

• The “apodization” turns out to be purely opaque and transparent (i.e., a mask).

21

Close Up

Brute force with n = 150

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Two-step with n = 1000

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

22

Summary Problem Stats

Comparison between a few sizes of the one-step and two-step models.

Problem-specific stats.

Model n m constraints variables nonzeros arith. ops.
One step 150 35 976 17,672 17,247,872 17,196,541,336
One step 250 35 * * * *
Two step 150 35 7,672 24,368 839,240 3,972,909,664
Two step 500 35 20,272 215,660 7,738,352 11,854,305,444
Two step 1000 35 38,272 822,715 29,610,332 23,532,807,719

Hardware/Solution-specific performance comparison data.

Model n m iterations primal objective dual objective cpu time (sec)
One step 150 35 54 0.05374227247 0.05374228041 1380
One step 250 35 * * * *
Two step 150 35 185 0.05374233071 0.05374236091 1064
Two step 500 35 187 0.05395622255 0.05395623990 4922
Two step 1000 35 444 0.05394366337 0.05394369256 26060

23

AFTA Space Telescope
Repurposed NRO Spy Satellite

Originally, five design concepts were proposed.
Our shaped pupil concept (shown here) was selected.
The high-contrast imaging system is being built.
The satellite will launch sometime mid 2020’s.

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000
−20 −10 0 10 20

−25

−20

−15

−10

−5

0

5

10

15

20

25

24

The Plan...

Introduction

Fourier Transform

Fourier Optimization

Example from High-Contrast Imaging

Fast-Fourier Optimization — Sparsifying the Constraint Matrix

Kronecker Compressed Sensing — Sparsifying the Constraint Matrix

2D Fourier Transform in Matrix Notation

Let

F := [fk1,k2], G := [gj1,k2], F̂ := [f̂j1,j2], and K := [κj1,k1],

where K denotes the m× n Fourier kernel matrix whose elements are

κj1,k1 = 2 cos(2πxk1ξj1)∆x.

The two-dimensional Fourier transform F̂ can be written simply as

F̂ = KFKT

and the computation of the transform in two steps is just the statement that the two matrix
multiplications can (and should!) be done separately:

G= KF

F̂ = GKT .

25

Clever Idea = Matrix Sparsification

Linear programming algorithms solve problems in this form:

maximize cTx
subject to Ax= b,

x≥ 0,

where b and c are given vectors and A is a given matrix.

Of course, x is a vector.

Optimization modeling languages, such as ampl, convert a problem from its “natural”
formulation to this matrix/vector paradigm and then hands it off to a solver.

Let’s take a look at this conversion...

26

Vectorizing...

Let fj, gj, and f̂j denote the column vectors of matrices F , G, and F̂ :

F = [f1 · · · fn] , G = [g1 · · · gn] , F̂ =
[
f̂1 · · · f̂m

]
.

We can list the elements of F , G and F̂ in column vectors:

vec(F) =

 f1
...
fn

 , vec(G) =

 g1
...
gn

 , vec(F̂) =

 f̂1
...

f̂m

 .
It is straightforward to check that

vec(G) =

 K . . .
K

 vec(F)

and that

vec(F̂) =

 κ1,1I · · · κ1,nI
... ...

κm,1I · · · κm,nI

 vec(G).

27

One-Step Method:
κ1,1K · · · κ1,nK −I

...
κm,1K · · · κm,nK −I

... ...





f1
...
fn

f̂1
...

f̂m


=


0
...
0
...



The big left block is a dense m2 × n2 matrix.
——————————————————————————————————
Two-Step Method:

K −I
.

K −I
κ1,1I · · · κ1,nI −I

...
κm,1I · · · κm,nI −I

...





f1
...
fn

g1
...
gn

f̂1
...

f̂m


=



0
...
0
0
...
0
...



The big upper-left block is a sparse block-diagonal mn× n2 matrix with mn2 nonzeros.
The middle block is an m× n matrix of sub-blocks that are each m×m diagonal matrices.
Hence, it is very sparse, containing only m2n nonzeros.

28

The Plan...

Introduction

Fourier Transform

Fourier Optimization

Example from High-Contrast Imaging

Fast-Fourier Optimization — Sparsifying the Constraint Matrix

Kronecker Compressed Sensing — Sparsifying the Constraint Matrix

Another Application: Compressive Sensing

Hidden: A large (length n) but very sparse vector x0.

Observed: A much shorter (length m) vector y = Ax0, where the matrix A can be specified
as we like.

Recover x0 by solving optimization problem:

minimize ‖x‖1

subject to Ax= y.

Problem is converted to a linear programming problem in the usual manner:

minimize 1T (x+ + x−)
subject to A(x+ − x−) = y

x+, x− ≥ 0.

29

It is much more efficient to pack x0 and y into matrices X0 and Y and solve a related
problem:

minimize 1T (X+ + X−)1T

subject to A(X+ −X−)BT = Y
X+, X− ≥ 0.

Here, A and B are specified as we like.

Assume that the total number of elements of X is n and of Y is m, where n and m are as
before.

Computational experiments show that for n = 141 × 142 and m = 33 × 34, the sparsified
version of this problem solves about 100 times faster than the original.

30

Thank You!

Backup Slides...

Lasso Regression

The problem is to solve a sparsity-encouraging “regularized” regression problem:

minimize ‖Ax− b‖2
2 + λ‖x‖1

My gut reaction:

Replace least squares (LS) with least absolute deviations (LAD).

LAD is to LS as median is to mean. Median is a more robust statistic.

The LAD version can be recast as a linear programming (LP) problem.

If the solution is expected to be sparse, then the simplex method can be expected to solve
the problem very quickly.

No one knows the “correct” value of the parameter λ. The parametric simplex method can
solve the problem for all values of λ from λ = ∞ to a small value of λ in the same (fast)
time it takes the standard simplex method to solve the problem for one choice of λ.

The parametric simplex method can be stopped when the desired sparsity level is attained.
No need to guess/search-for the correct value of λ.

Linear Programming Formulation

The least absolute deviations variant is given by

minimize ‖Ax− b‖1 + λ‖x‖1

It is easy to reformulate this problem as a linear programming problem:

min
x

1Tε + λ 1Tδ

subject to − ε ≤ Ax− b ≤ ε

−δ ≤ x ≤ δ

Note: There exists a critical value λc such that the optimal solution for all λ ≥ λc is trivial:

x = 0

δ = 0

εi = |bi|, for all i.

The Simplex Method

We start by introducing slack variables:

minimize 1Tε + λ 1Tδ

subject to −Ax − ε + s = −b
Ax − ε + t = b

−x − δ + u = 0

x − δ + v = 0

s, t, u, v ≥ 0

We must identify a partition of the set of all variables into basic and nonbasic variables.

If A is an m× n matrix, then there are 2m+ 2n equality constraints in 3m+ 4n variables.

The variables, x, ε, and δ can be regarded as free variables.

In the simplex method, free variables are always basic variables.

Let P denote the set of indices i for which bi ≥ 0 and let N denote those for which bi < 0.

Dictionary Form

Writing the equations with the nonbasic variables defining the basic ones, we get:

minimize 1TbP − 1TbN + 1TsP + 1T tN − 1
2
(p− n)u + 1

2
(p− n)v

+ λ 1
2
u + λ 1

2
v

subject to εP = bP + sP − 1
2
Pu + 1

2
Pv

sN = −2bN + tN + Nu − Nv

tP = 2bP + sP − Pu + Pv

εN = −bN + tN + 1
2
Nu − 1

2
Nv

x = 0 + 1
2
u − 1

2
v

δ = 0 + 1
2
u + 1

2
v

where

A =

[
P
N

]
, ε =

[
εP
εN

]
, s =

[
sP
sN

]
, t =

[
tP
tN

]
, p = 1TP, and n = 1TN.

Dictionary Form

Writing the equations with the nonbasic variables defining the basic ones, we get:

minimize 1TbP − 1TbN + 1TsP + 1T tN − 1
2
(p− n)u + 1

2
(p− n)v

+ λ 1
2
u + λ 1

2
v

subject to

sN = −2bN + tN + Nu − Nv

tP = 2bP + sP − Pu + Pv

where

A =

[
P
N

]
, ε =

[
εP
εN

]
, s =

[
sP
sN

]
, t =

[
tP
tN

]
, p = 1TP, and n = 1TN.

Parametric Simplex Method

A dictionary solution is obtained by setting the nonbasic variables to zero and reading off the
values of the basic variables from the dictionary.

The dictionary solution on the previous slide is feasible.

It is optimal provided the coefficients of the variables in the objective function are nonnegative:

1 ≥ 0,

−(pj − nj)/2 + λ/2 ≥ 0,

(pj − nj)/2 + λ/2 ≥ 0.

This simplifies to
λ ≥ max

j
(pj − nj)

The specific index defining this max sets the lower bound on λ and identifies the entering
variable for the parametric simplex method.

The leaving variable is determined in the usual way.

A simplex pivot is performed.

A new range of λ values is determined (the lower bound from before becomes the upper
bound).

The process is repeated.

Random Example

A matrix A with m = 3000 observations and n = 200 was generated randomly.

The linear programming problem has 6400 constraints, 9800 variables, and 1213200 nonzeros
in the constraint matrix.

A simple C implementation of the algorithm finds a solution with 6 nonzero regression coef-
ficients in just 44 simplex pivots (7.8 seconds).

This compares favorably with the 5321 pivots (168.5 seconds) to solve the problem all the
way to λ = 0.

A speedup by a factor of 21.6.

“Real-World” Example

A regression model from my Local Warming studies with m = 2899 observations and n =
106 regression coefficients of which only 4 are deemed relevant (linear trend plus seasonal
changes).

The linear programming problem has 6010 constraints, 9121 variables, and 626820 nonzeros
in the constraint matrix.

My implementation finds a solution with 4 nonzero regression coefficients in 1871 iterations
(37.0 seconds).

This compares favorably with the 4774 iterations (108.2 seconds) to solve the problem to
λ = 0.

But, why so many iterations just to get just a few nonzeros?

A Simple Median Example

To answer the question, consider the simplest example where n = 1 and A = e.

In this case, the problem is simply a lasso variant of a median computation...

min
x

∑
i

|x− bi| + λ|x|.

Clearly, if λ is a positive integer, then this Lasso problem is equivalent to computing the
median of the original numbers, b1, b2, . . . , bm, augmented with λ zeros, 0, 0, 0, . . . , 0.

Best case scenario: the median of the bi’s is close to zero. For example, suppose the median
is positive but the next smaller bi is negative. Then, just need to add one or two zeros to
make the median exactly zero. And, after one simplex iteration, we will arrive at the true
median.

Worst case scenario: all of the bi’s have the same sign. Suppose they are all positive. Then
we have to add m+1 zeros to make the lasso’ed median zero. The first iteration will produce
a single nonzero: the minimum of the bi’s. That’s a terrible estimate of the median! Each
subsequent simplex pivot produces the next larger bi until, after m/2 pivots, the true median
is found.

Traditional (Least Squares) Lasso

Consider the least squares variant of the previous example:

min
x

1

2

∑
i

(x− bi)2 + λ|x|.

Set the derivative of the objective function to zero:

f ′(x) = mx−
∑
i

bi + λ sgn(x) = 0.

Without loss of generality, suppose that
∑

i bi > 0.
We see that the Lasso solution is zero for

λ ≥
∑
i

bi.

For 0 ≤ λ ≤
∑

i bi, the solution is

x =

∑
i bi − λ
m

.
−1 0 1 2 3 4 5 6 7 8 9 10

−80

−60

−40

−20

0

20

40

60

80

x
d

f/
d

x

Data

λ=10

λ=0

So, as with LAD-Lasso, depending on the choice of λ we can get anything between 0 and
the sample mean x̄ =

∑
i bi/m.

(Unexpected) Conclusion

The parametric simplex method for the LAD-Lasso problem can generate sparse solutions in
a very small number of pivots.

With the parametric simplex method there is no need to guess/search for the value of λ that
gives a desired regressant sparsity.

When the number of pivots is small, one can expect the result to be good.

But, LAD-Lasso regression can also sometimes produce terrible results.

The same is true for traditional Lasso regression.

Final word of caution: units matter! When introducing a norm that involves a sum of terms,
it is important that each term have the same units.

Lasso References

• Regression Shrinkage and Selection via the LASSO,
Tsibshirani,
J. Royal Statistical Soc., Ser. B, 58, 267–288, 1996

• Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso,
Wang, Li, and Jiang,
Journal of Business and Economic Statistics, 25(3), 347–355, 2007.

Parametric Simplex Method References

• Linear Programming and Extensions,
Dantzig
Princeton University Press, Chapter 11, 1963

• Linear Programming: Foundations and Extensions,
Vanderbei, any edition
Springer, Chapter 7, 1997

• Frontiers of Stochastically Nondominated Portfolios,
Ruszczyński and Vanderbei,
Econometrica, 71(4), 1289–1297, 2003.

• The Fastclime Package for Linear Programming and Large-Scale Precision Matrix Esti-
mation in R,
Pang, Liu, and Vanderbei,
Journal of Machine Learning Research, 2013.

• Optimization for Compressed Sensing: the Simplex Method and Kronecker Sparsification,
Vanderbei, Liu, Wang, and Lin,
Mathematical Programming Computation, submitted, 2013.

Thank You!

