Sizing Up The Universe A Freshman Seminar

Robert Vanderbei

Princeton Club of Rochester NY via Zoom

http://vanderbei.princeton.edu

A Little About Me

- Born/Raised: Grand Rapids, MI
- Undergrad: Chemistry, 1976, Rensselaer Polytechnic Institute (aka RPI not RIT)
- Grad: Applied Math, 1981, Cornell
- Postdocs:
 - NSF Fellow, Math, NYU
 - Visiting Lecturer, Math, Univ. of Illinois Urbana/Champaign
- Industry:
 - AT&T Bell Labs, Math Research Center
- Academia: Princeton, 1990-present
- Hobbies/Passions:
 - Soaring
 - Tennis
 - Astronomy
 - Photography
 - $\ {\sf Math}/{\sf Computation}$
 - Local Warming, Purple America, etc.

10" Reflector, 4" Refractor, Telephoto Lens

Move equipment outside.

Ready To Go...

Is The Earth Flat?

A Picture's Worth a Thousand Words...

How Aristarchus measured the size of the Moon.

How Big Is Earth?

A picture I took of a sunset over Lake Michigan.

A close-up.

Using this picture, some geometry, and a little trigonometry, I was able to compute that the Earth's radius is about 5000 miles.

Geometry — If the Earth Were Flat!

$$\begin{array}{lll} \alpha &= \beta & & \mbox{alternate interior angles are equal} \\ \beta &= \gamma & & \mbox{alternate interior angles are equal} \\ \gamma &= \delta & & \mbox{angle of incidence equals angle of reflection (from Physics!)} \\ \delta &= \epsilon & & \mbox{alternate interior angles are equal} \end{array}$$

Therefore,

$\alpha = \epsilon$.

The reflection dips just as far below the horizon as the Sun stands above the horizon.

Geometry — The Earth Is Not Flat

Draw a picture.

Label everything of possible relevance.

Identify what we know:

- α Angle between horizon and top of Sun (measured from photo)
- β Angle between horizon and "top" of Sun in reflection (measured)
- h Height of "eye-level" above "water-level".

What We Know (Measure!)

The Sun is $1/2^{\circ}$ in diameter. Therefore, 1° equals $2 \times 317 = 634$ pixels. And so,

$$lpha = 69 \text{ pixels} imes rac{1 \text{ degree}}{634 \text{ pixels}} = 0.1088 \text{ degrees}$$

 and

$$\beta = 29$$
 pixels $\times \frac{1 \text{ degree}}{634 \text{ pixels}} = 0.0457 \text{ degrees}.$

And, we assume that eye level is

$$h = 7$$
 feet

Hence... Earth's radius is about 5,000 miles.

Which Is Further Away... Sun or Moon?

The Sun is about 400 times further away...

Halloween's Blue Moon

Oct. 31, 2020

Crescent Moon

Moon and Mars

Mars

Oct. 6 and 18, 2020

Jupiter and Saturn

32 and 67 min

Comet 103P / Double Cluster

$1.2~\mathrm{min}$ / 7,460 and 7,640 yrs

Looking Out Beyond Our Solar System

Distance Measurements

There are various ideas/methods for measuring distances.

The simplest is called *parallax*.

Using parallax, we can measure the distance to nearby stars.

For things further away, we need more clever/subtle methods.

Parallax: Distance to the Stars

Barnard's Star Overlay

Barnard's Star Closeup

The measured parallax is 0.5478 arcsecs. Corresponds to a distance of 5.97 lightyears.

Is The Universe Infinitely Big? – Olbers' Paradox

Orion Nebula: M42

1,344 yrs

Dumbbell Nebula

1,360 yrs

Veil Nebula: NGC 6960 and 6992

Western Veil: NGC 6960

2,400 yrs

Eastern Veil: NGC 6992

2,400 yrs

Ring Nebula: M57

2,567 yrs

Crescent Nebula: NGC 6888

5;000 yrs

Jellyfish Nebula: IC 443

Rosette Nebula: NGC 2237

5,200 yrs

Eagle Nebula: M16

Crab Nebula

0

•

.

Mar. 26, 2019

••

6,500 yrs

C

Crab Nebula

Oct. 27, 2006

6,500 yrs

Bubble Nebula

 $9,100\,\pm\,2,000\,\,{\rm yrs}$

Globular Cluster M13

Looking Out Beyond Our Milky Way

The Andromeda Galaxy

M81 and M82

$12,000,000 \ yrs$

The Whirlpool Galaxy

The Whirlpool Galaxy

The Whirlpool Galaxy

The Leo Trio

The Needle Galaxy (NGC 4565)

42,700,000 yrs

Welcome to the Universe in 3D

Welcome to the Universe in 3D A Visual Tour Nei deGrasse Tyon, Michael A. Strauss, J. Richard Gott, and Robert J. Vanderbei

3D Pictures from the Book

Moon

Mars

Mimas

Crab Nebula

Andromeda

Hubble Ultra Deep Field

Questions?