Sizing Up The Universe
 A. Freshman Seminar

- Robbert Vanderbei

Princeton Club of Roc̣hester NY via Zoom

http://vanderbei.princeton.edu

A Little About Me

- Born/Raised: Grand Rapids, MI
- Undergrad: Chemistry, 1976, Rensselaer Polytechnic Institute (aka RPI not RIT)
- Grad: Applied Math, 1981, Cornell
- Postdocs:
- NSF Fellow, Math, NYU
- Visiting Lecturer, Math, Univ. of Illinois Urbana/Champaign
- Industry:
- AT\&T Bell Labs, Math Research Center
- Academia: Princeton, 1990-present
- Hobbies/Passions:
- Soaring
- Tennis
- Astronomy
- Photography
- Math/Computation
- Local Warming, Purple America, etc.

10" Reflector, 4" Refractor, Telephoto Lens

Move equipment outside.

Ready To Go...

Is The Earth Flat?
A Picture's Worth a Thousand Words...

How Aristarchus measured the size of the Moon.

How Big Is Earth?

A picture I took of a sunset over Lake Michigan.

A close-up.

Using this picture, some geometry, and a little trigonometry, I was able to compute that the Earth's radius is about 5000 miles.

Geometry - If the Earth Were Flat!

Lake Michigan

Earth

$$
\begin{array}{ll}
\alpha=\beta & \\
\beta=\gamma & \text { alternate interior angles are equal } \\
\beta=\delta & \\
\gamma=\epsilon & \\
\gamma=\text { alternate interior angles are equal } \\
\delta=\text { alternate interior angles are equal }
\end{array}
$$

Therefore,

$$
\alpha=\epsilon .
$$

The reflection dips just as far below the horizon as the Sun stands above the horizon.

Geometry - The Earth Is Not Flat

Draw a picture.

Label everything of possible relevance.

Identify what we know:
α Angle between horizon and top of Sun (measured from photo)
β Angle between horizon and "top" of Sun in reflection (measured)
h Height of "eye-level" above "water-level".

What We Know (Measure!)

69 pixels above horizon

29 pixels below horizon

Sun is 317 pixels in diameter

The Sun is $1 / 2^{\circ}$ in diameter. Therefore, 1° equals $2 \times 317=634$ pixels. And so,

$$
\alpha=69 \text { pixels } \times \frac{1 \text { degree }}{634 \text { pixels }}=0.1088 \text { degrees }
$$

and

$$
\beta=29 \text { pixels } \times \frac{1 \text { degree }}{634 \text { pixels }}=0.0457 \text { degrees. }
$$

And, we assume that eye level is

$$
h=7 \text { feet }
$$

Hence... Earth's radius is about 5,000 miles.

Which Is Further Away... Sun or Moon?

The Sun is about 400 times further away...

Moon at First Qtr

Halloween's Blue Moon

Moon

Moon and Mars

Moon and Mars

Comet 103P / Double Cluster

Looking Out Beyond Our Solar System

Distance Measurements

There are various ideas/methods for measuring distances.

The simplest is called parallax.

Using parallax, we can measure the distance to nearby stars.

For things further away, we need more clever/subtle methods.

Parallax: Distance to the Stars

How it is

Barnard's Star

Barnard's Star Overlay

Barnard's Star Closeup

The measured parallax is 0.5478 arcsecs. Corresponds to a distance of 5.97 lightyears.

Is The Universe Infinitely Big? - Olbers' Paradox

Orion Nebula: M42

Ring Nebula: M! 57

Crescent*Ṅ Nébula: NGC 6888

Jellyfish Nebula: IC 443

Rosette Nebula: NGC 2237

Eagle Nebula: M16

Crab Nebula.

Crab Nebula.

Looking Out Beyond Our Milky Way

The Andromeda Galaxy

The Whirlpool Galaxy

The Whirlpool Galaxy

The Whirlpool Galaxy

The Leo Trio

The Needle Galaxy (NGC 4565)

Welcome to the Universe in 3D

3D Pictures from the Book

Mimas

Questions?

