A New Flat Map of a Sphere via Stress Minimization

Robert J. Vanderbei

2022 February 16

https://vanderbei.princeton.edu
A More Accurate World Map
Gott-Goldberg-Vanderbei Projection
In 1569, when Flemish cartographer Gerardus Mercator flattened the earth’s cylindrical surface onto paper, he gave sailors the tools to navigate ocean voyages. But he also distorted the size of countries nearest the poles—North America appears abnormally large, for example. Despite the inaccuracies, the Mercator projection became the norm, and was even the basis of Google Maps until as recently as 2018. Astrophysicist J. Richard Gott, along with colleagues David Goldberg and Robert Vanderbei, set out in 2019 to fix the inaccuracies and came up with a double-sided map that is similar to a vinyl record in shape. It improves geographical parity between continents, finally representing the southern hemisphere as fairly as possible on paper. The map is free to access online, and the scientists are working with publishers to make it widely available for sale in the future. —Eloise Barry

CONTACT US AT LETTERS@TIME.COM.
Classic Map Projections...
Equirectangular Map
Mollweide Map
Lambert Map
Azimuthal Equidistant
Distortion Metrics

- Skewness
- Flexion
- Isotropy
- Area
- Distances
- Boundary Cuts

Winkel Tripel is “best”
A New Map Projection...
Let’s Minimize Stress
Imagine a Large Rubber Earth Ball
Suppose it has an Expandable Metal Ring Inside
Suppose that the y-axis is the polar axis and hence the equatorial ring is in the (x, z) plane.

Now let’s *stretch* the ring so that it has a radius larger than its default value of, say, 1.

Without loss of generality, we can focus on just one longitudinal plane, let’s say the one associated with $z = 0$.

As shown above, the geometry of the stretched ball can be described by two functions f and g.
Let’s Do Some Math

Let x and y denote the coordinates of the *unstretched* ball and let \tilde{x} and \tilde{y} denote the coordinates of the *stretched* ball.

If we let θ denote the angle down from the North Pole, then we have

$$x(\theta) = \sin(\theta), \ y(\theta) = \cos(\theta) \quad \text{and} \quad \tilde{x}(\theta) = f(\theta), \ \tilde{y}(\theta) = g(\theta)$$

According to physics, the shape of the stretched ball will be such that the integral over the ball’s surface of the magnitude squared of the stress tensor is *minimized*.
Stress

At the point \((\tilde{x}(\theta), \tilde{y}(\theta))\) in the stretched circular slice, let \(\sigma(\theta)\) denote the stress in the direction tangent to the circle and let \(\rho(\theta)\) denote the stress in the direction perpendicular to the 2-dimensional plane of the slice.

Working with infinitesimal perturbations, we have

\[
\|(dx, dy)\| = \sqrt{dx^2 + dy^2} = \sqrt{\cos^2(\theta) + \sin^2(\theta)} \, d\theta = d\theta.
\]

and

\[
\|(d\tilde{x}, d\tilde{y})\| = \sqrt{d\tilde{x}^2 + d\tilde{y}^2} = \sqrt{f'(\theta)^2 + g'(\theta)^2} \, d\theta.
\]

and from these it is easy to compute \(\sigma(\theta)\):

\[
\sigma(\theta) = \frac{\|(d\tilde{x}, d\tilde{y})\|}{\|(dx, dy)\|} - 1 = \sqrt{f'(\theta)^2 + g'(\theta)^2} - 1.
\]

Computing \(\rho(\theta)\) is even easier:

\[
\rho(\theta) = \frac{f(\theta)}{\sin(\theta)} - 1.
\]
Minimum Stress Problem

\[
\min_{f, g} \int_0^{\pi/2} \left(\sigma(\theta)^2 + \rho(\theta)^2 \right) 2\pi \sin(\theta) d\theta
\]

where

\[
\sigma(\theta) = \sqrt{f'(\theta)^2 + g'(\theta)^2} - 1
\]

\[
\rho(\theta) = \frac{f(\theta)}{\sin(\theta)} - 1
\]

\[
g(\theta) = 0, \quad 0 \leq \theta \leq \pi/2
\]

\[
f(0) = 0
\]

\[
f'(\theta) \geq 0, \quad 0 \leq \theta \leq \pi/2.
\]
Question:

Is the optimal function linear: \(f(\theta) = c \theta \)?
Question:

Is the optimal function linear: \(f(\theta) = c \theta \) ?

Conjecture:

Maybe
Calculus of Variations

Objective Function:

\[S(f) = \int_0^{\pi/2} \left((f'(\theta) - 1)^2 + \left(\frac{f(\theta)}{\sin(\theta)} - 1 \right)^2 \right) 2\pi \sin(\theta) d\theta \]

Perturbation:

\[\partial f(\theta), \quad 0 \leq \theta \leq \pi/2 \]

Critical Points:

\[\lim_{\varepsilon \to 0} \frac{S(f + \varepsilon \partial f) - S(f)}{\varepsilon} = 0 \]
Compute the Ratio:

\[
\frac{S(f + \varepsilon \partial f) - S(f)}{\varepsilon} \\
= 2\pi \int_0^{\pi/2} \left(f'(\theta)^2 + 2f'(\theta)\varepsilon \partial f'(\theta) + \varepsilon^2 \partial f'(\theta)^2 - 2f'(\theta) - 2\varepsilon \partial f'(\theta) + 1 - f'(\theta)^2 + 2f'(\theta) - 1 + \frac{f(\theta)^2}{\sin^2(\theta)} + 2\frac{f(\theta)\varepsilon \partial f(\theta)}{\sin^2(\theta)} + \frac{\varepsilon^2 \partial f(\theta)^2}{\sin^2(\theta)} - 2\frac{f(\theta)}{\sin(\theta)} - 2\frac{\varepsilon \partial f(\theta)}{\sin(\theta)} + 1 - \frac{f(\theta)^2}{\sin^2(\theta)} + 2\frac{f(\theta)}{\sin(\theta)} - 1 \right) \sin(\theta) \frac{1}{\varepsilon} d\theta. \\
= 2\pi \int_0^{\pi/2} \left(2f'(\theta) \partial f'(\theta) + \varepsilon \partial f'(\theta)^2 - 2 \partial f'(\theta) + 2\frac{f(\theta) \partial f(\theta)}{\sin^2(\theta)} + \frac{\varepsilon \partial f(\theta)^2}{\sin^2(\theta)} - 2\frac{\partial f(\theta)}{\sin(\theta)} \right) \sin(\theta) d\theta.
\]
Take the Limit:

\[
\frac{S(f + \varepsilon \partial f) - S(f)}{\varepsilon} = 2\pi \int_0^{\pi/2} \left(\frac{2f'(\theta) \partial f'(\theta)}{\sin^2(\theta)} + \varepsilon \frac{(\partial f'(\theta))^2}{\sin^2(\theta)} - 2 \frac{\partial f'(\theta)}{\sin(\theta)} \right) \sin(\theta) d\theta
\]

\[
\lim_{\varepsilon \to 0} \frac{S(f + \varepsilon \partial f) - S(f)}{\varepsilon} = 4\pi \int_0^{\pi/2} \left(\frac{f'(\theta) \partial f'(\theta)}{\sin^2(\theta)} - \frac{\partial f'(\theta)}{\sin(\theta)} \right) \sin(\theta) d\theta.
\]

Simpler notation...

\[
\frac{\partial S}{\partial f} = \lim_{\varepsilon \to 0} \frac{S(f + \varepsilon \partial f) - S(f)}{\varepsilon}
\]
Critical Point:

Set the differential to zero...

\[
\frac{\partial S}{\partial f} = 4\pi \int_0^{\pi/2} \left(f'(\theta) \, \partial f'(\theta) - \partial f'(\theta)
+ \frac{f(\theta) \, \partial f(\theta)}{\sin^2(\theta)} - \frac{\partial f(\theta)}{\sin(\theta)} \right) \sin(\theta) d\theta
\]

\[
= 4\pi \int_0^{\pi/2} \left((f'(\theta) - 1) \, \partial f'(\theta) + \left(\frac{f(\theta)}{\sin(\theta)} - 1 \right) \, \partial f(\theta) \right) \sin(\theta) d\theta
\]

\[
= 0.
\]
Integrate by Parts:

\[
\int_{0}^{\pi/2} \left(f'(\theta) - 1 \right) \sin(\theta) \, \partial f'(\theta) d\theta = \left(f'(\pi/2) - 1 \right) \partial f(\pi/2)
\]

\[
- \int_{0}^{\pi/2} \left(f''(\theta) \sin(\theta) + (f'(\theta) - 1) \cos(\theta) \right) \, \partial f(\theta) d\theta.
\]

Substituting this into our equation defining critical points, we get

\[
0 = \left(f'(\pi/2) - 1 \right) \partial f(\pi/2)
\]

\[
- \int_{0}^{\pi/2} \left(f''(\theta) \sin(\theta) + (f'(\theta) - 1) \cos(\theta) - \frac{f(\theta)}{\sin(\theta)} + 1 \right) \, \partial f(\theta) d\theta.
\]

This equation must be equal to zero for all valid choices of the perturbation function \(\partial f \). Hence...
Differential Equation:

\[
\sin^2(\theta) f''(\theta) + \sin(\theta) \cos(\theta) f'(\theta) - f(\theta) = \sin(\theta) \cos(\theta) - \sin(\theta)
\]

\[
f(0) = 0
\]

\[
f'(\frac{\pi}{2}) = 1.
\]
Let's try $f(\theta) = \theta$...

$$\sin^2(\theta) f''(\theta) + \sin(\theta) \cos(\theta) f'(\theta) - f(\theta) = \sin(\theta) \cos(\theta) - \theta$$

$$f(0) = 0$$

$$f'(\pi/2) = 1.$$
The output produced by *Mathematica* (with x changed to θ) is

$$f(\theta) = \log(2) \tan(\theta/2) - 2 \cot(\theta/2) \log(\cos(\theta/2)).$$

The output produced by *Matlab* (again with x changed to θ) is

$$f(\theta) = -\frac{\log(\cos(\theta)/4 + 1/4) + 2 \log(e^{i\theta} + 1) \cos(\theta) - \log(2) \cos(\theta) - \theta \cos(\theta)i}{\sin(\theta)}.$$

NOTE: These two functions look different, but they are the same.
Almost Linear

![Graph showing minimal stress and linear approximation](image)

- **Minimal Stress**
- **Linear Approximation**
Check that it’s a Min, not a Max or a Saddle Point

Let’s look at the second order differential in every possible perturbational direction...

\[
\frac{\partial^2 S}{\partial f^2} = \lim_{\varepsilon \to 0} \frac{S(f + \varepsilon \partial f) - 2S(f) + S(f - \varepsilon \partial f)}{\varepsilon^2}
\]

Let’s compute...

\[
\frac{S(f + \varepsilon \partial f) - 2S(f) + S(f - \varepsilon \partial f)}{\varepsilon^2} = \frac{S(f + \varepsilon \partial f) - S(f)}{\varepsilon^2} + \frac{S(f - \varepsilon \partial f) - S(f)}{\varepsilon^2}
\]

\[
= 4\pi \int_0^{\pi/2} \left(\partial f'(\theta)^2 + \frac{\partial f(\theta)^2}{\sin^2(\theta)} \right) \sin(\theta) d\theta
\]

\[
\geq 0.
\]

Ergo, it’s a minimum!
THANK YOU
Solving the Differential Equation

Let

\[g(\theta) = \sin(\theta) f(\theta). \]

The differential equation in terms of \(g \):

\[
\sin(\theta) g''(\theta) - \cos(\theta) g'(\theta) = \sin(\theta) \cos(\theta) - \sin(\theta)
\]

\[
g(0) = 0
\]

\[
g'(\pi/2) = 1.
\]

Let

\[h(\theta) = g'(\theta). \]

The differential equation in terms of \(h \):

\[
\sin(\theta) h'(\theta) - \cos(\theta) h(\theta) = \sin(\theta) \cos(\theta) - \sin(\theta)
\]

\[
h(\pi/2) = 1.
\]

The solution is:

\[h(\theta) = \sin(\theta) + \log(\cos(\theta) + 1) \sin(\theta). \]

Integrating, we get:

\[g(\theta) = 2 \log(2) - \left(\cos(\theta) + 1 \right) \log(\cos(\theta) + 1) \]

and from that we get:

\[f(\theta) = \frac{2 \log(2) - \left(\cos(\theta) + 1 \right) \log(\cos(\theta) + 1)}{\sin(\theta)}. \]