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Classic Map Projections...



Equirectangular Map



Mercator Map



Winkel Tripel Map



Nicolosi Map



Aitoff Map



Mollweide Map



Lambert Map



Wagner Map



Azimuthal Equidistant



Distortion Metrics

• Skewness

• Flexion

• Isotropy

• Area

• Distances

• Boundary Cuts

Winkel Tripel is “best”



A New Map Projection...



Gott-Goldberg-Vanderbei Map



It’s a Two-Sided Map



Let’s Minimize Stress



Imagine a Large Rubber Earth Ball



Suppose it has an Expandable Metal Ring Inside



Stretch It
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Suppose that the y-axis is the polar axis and hence the equatorial ring is in the (x, z) plane.

Now let’s stretch the ring so that it has a radius larger than its default value of, say, 1.

Without loss of generality, we can focus on just one longitudinal plane, let’s say the one
associated with z = 0.

As shown above, the geometry of the stretched ball can be described by two functions
f and g.



Let’s Do Some Math
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Let x and y denote the coordinates of the unstretched ball and

let x̃ and ỹ denote the coordinates of the stretched ball.

If we let θ denote the angle down from the North Pole, then we have

x(θ) = sin(θ), y(θ) = cos(θ) and x̃(θ) = f (θ), ỹ(θ) = g(θ)

According to physics, the shape of the stretched ball will be such that the integral over the
ball’s surface of the magnitude squared of the stress tensor is minimized.



Stress

At the point (x̃(θ), ỹ(θ)) in the
stretched circular slice, let σ(θ) de-
note the stress in the direction tan-
gent to the circle and let ρ(θ) denote
the stress in the direction perpendic-
ular to the 2-dimensional plane of the
slice.
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Working with infinitesimal perturbations, we have

‖(dx, dy)‖ =
√
dx2 + dy2 =

√
cos2(θ) + sin2(θ) dθ = dθ.

and

‖(dx̃, dỹ)‖ =
√
dx̃2 + dỹ2 =

√
f ′(θ)2 + g′(θ)2 dθ.

and from these it is easy to compute σ(θ):

σ(θ) =
‖(dx̃, dỹ)‖
‖(dx, dy)‖

− 1 =
√
f ′(θ)2 + g′(θ)2 − 1.

Computing ρ(θ) is even easier:

ρ(θ) =
f (θ)

sin(θ)
− 1.



Minimum Stress Problem

min
f, g

∫ π/2

0

(
σ(θ)2 + ρ(θ)2

)
2π sin(θ)dθ

where

σ(θ) =
√
f ′(θ)2 + g′(θ)2 − 1

ρ(θ) =
f (θ)

sin(θ)
− 1

g(θ) = 0, 0 ≤ θ ≤ π/2

f (0) = 0

f ′(θ) ≥ 0, 0 ≤ θ ≤ π/2.



Question:

Is the optimal function linear: f (θ) = c θ ?



Question:

Is the optimal function linear: f (θ) = c θ ?

Conjecture:

Maybe



Calculus of Variations

Objective Function:

S(f ) =

∫ π/2

0

(f ′(θ) − 1
)2
+

(
f (θ)

sin(θ)
− 1

)2
 2π sin(θ)dθ

Perturbation: ∂f (θ), 0 ≤ θ ≤ π/2

Critical Points: limε→0

S(f + ε ∂f )− S(f )
ε

= 0



Compute the Ratio:

S(f + ε ∂f )− S(f )
ε

= 2π

∫ π/2

0

f ′(θ)2 +2f ′(θ)ε ∂f ′(θ) +ε2 ∂f ′(θ)2 −2f ′(θ) −2ε ∂f ′(θ) +1
−f ′(θ)2 +2f ′(θ) −1

+
f (θ)2

sin2(θ)
+2
f (θ)ε ∂f (θ)

sin2(θ)
+
ε2 ∂f (θ)2

sin2(θ)
−2 f (θ)

sin(θ)
−2ε ∂f (θ)

sin(θ)
+1

− f (θ)2

sin2(θ)
+2

f (θ)

sin(θ)
−1

 sin(θ)
1

ε
dθ.

= 2π

∫ π/2

0

 2f ′(θ) ∂f ′(θ) +ε ∂f ′(θ)2 −2 ∂f ′(θ)

+2
f (θ) ∂f (θ)

sin2(θ)
+
ε ∂f (θ)2

sin2(θ)
−2 ∂f (θ)

sin(θ)

 sin(θ)dθ.



Take the Limit:

S(f + ε ∂f )− S(f )
ε

= 2π

∫ π/2

0

 2f ′(θ) ∂f ′(θ) +ε ∂f ′(θ)2 −2 ∂f ′(θ)

+2
f (θ) ∂f (θ)

sin2(θ)
+ε

∂f (θ)2

sin2(θ)
−2 ∂f (θ)

sin(θ)

 sin(θ)dθ

lim
ε→0

S(f + ε ∂f )− S(f )
ε

= 4π

∫ π/2

0

 f ′(θ) ∂f ′(θ) − ∂f ′(θ)

+
f (θ) ∂f (θ)

sin2(θ)
− ∂f (θ)

sin(θ)

 sin(θ)dθ.

Simpler notation...
∂S

∂f
= lim

ε→0

S(f + ε ∂f )− S(f )
ε



Critical Point:

Set the differential to zero...

∂S

∂f
= 4π

∫ π/2

0

 f ′(θ) ∂f ′(θ) − ∂f ′(θ)

+
f (θ) ∂f (θ)

sin2(θ)
− ∂f (θ)

sin(θ)

 sin(θ)dθ

= 4π

∫ π/2

0

 (f ′(θ)− 1) ∂f ′(θ) +

(
f (θ)

sin(θ)
− 1

)
∂f (θ)

 sin(θ)dθ

= 0.



Integrate by Parts:

∫ π/2

0

(
f ′(θ)− 1

)
sin(θ) ∂f ′(θ)dθ =

(
f ′(π/2)− 1

)
∂f (π/2)

−
∫ π/2

0

(
f ′′(θ) sin(θ) + (f ′(θ)− 1) cos(θ)

)
∂f (θ)dθ.

Substituting this into our equation defining critical points, we get

0 =
(
f ′(π/2)− 1

)
∂f (π/2)

−

∫ π/2

0

(
f ′′(θ) sin(θ) + (f ′(θ)− 1) cos(θ)− f (θ)

sin(θ)
+ 1

)
∂f (θ)dθ.

This equation must be equal to zero for all valid choices of the perturbation function ∂f .
Hence...



Differential Equation:

sin2(θ)f ′′(θ) + sin(θ) cos(θ)f ′(θ)− f (θ) = sin(θ) cos(θ)− sin(θ)

f (0) = 0

f ′(π/2) = 1.



Differential Equation:

sin2(θ)f ′′(θ) + sin(θ) cos(θ)f ′(θ)− f (θ) = sin(θ) cos(θ)− sin(θ)

f (0) = 0

f ′(π/2) = 1.

Let’s try f (θ) = θ...

sin2(θ)f ′′(θ) + sin(θ) cos(θ)f ′(θ)− f (θ) = sin(θ) cos(θ)− θ

6= sin(θ) cos(θ)− sin(θ)

Almost but no cigar.



Mathematica
s = DSolve[ {Sin[x]^2*y’’[x]+Sin[x]*Cos[x]*y’[x]-y[x]==Sin[x]*Cos[x]-Sin[x],

y[0]==0, y’[Pi/2]==1}, y[x], x] // FullSimplify

f[x_]=y[x]/.s[[1]]

The output produced by Mathematica (with x changed to θ) is

f (θ) = log(2) tan(θ/2)− 2 cot(θ/2) log(cos(θ/2)).

Matlab
syms f(x)
f1 = diff(f,x);

f2 = diff(f,x,2);

ode = sin(x)^2 * f2 + sin(x)*cos(x) * f1 - f == sin(x)*cos(x) - sin(x);

cond1 = f(0) == 0;

cond2 = f1(pi/2) == 1;

conds = [cond1 cond2];

fSol(x) = dsolve(ode,conds)

fSim(x) = simplify(fSol(x), ’steps’, 14)

The output produced by Matlab (again with x changed to θ) is

f (θ) = −log(cos(θ)/4 + 1/4) + 2 log(eiθ + 1) cos(θ)− log(2) cos(θ)− θ cos(θ)i
sin(θ)

NOTE: These two functions look different, but they are the same.



Almost Linear
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Minimal Stress
Linear Approximation



Check that it’s a Min, not a Max or a Saddle Point

Let’s look at the second order differential in every possible perturbational direction...

∂2S

∂f 2
= lim

ε→0

S(f + ε ∂f )− 2S(f ) + S(f − ε ∂f )
ε2

Let’s compute...

S(f + ε ∂f )− 2S(f ) + S(f − ε ∂f )
ε2

=
S(f + ε ∂f )− S(f )

ε2
+

S(f − ε ∂f )− S(f )
ε2

= 4π

∫ π/2

0

 ∂f ′(θ)2 +
∂f (θ)2

sin2(θ)

 sin(θ)dθ

≥ 0.

Ergo, it’s a minimum!



Part II
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Are We Alone? What Are The Odds?

https://vanderbei.princeton.edu/tex/talks/Rutgers2023/not-alone.mp4


Are We Alone? What Are The Odds?

�
�
�

�
�
�
���

This is Earth

https://vanderbei.princeton.edu/tex/talks/Rutgers2023/not-alone.mp4


Some Background



Christiaan Huygens (1678): Light is a Wave

Young’s two-slit diffraction experiment (1801):

https://en.wikipedia.org/wiki/Double-slit_experiment
https://en.wikipedia.org/wiki/Double-slit_experiment


James Clerk Maxwell (1862):
Light is an Electro-Magnetic Wave



Albert Einstein (1905): Light is a Particle

Explained the photoelectric effect,
which led to the new field of quantum mechanics.
Einstein himself never accepted it.

Modern CCD cameras count photons.



Direct Detection



First Detection via Direct Imaging
Mag. 1.2, Distance 25 ly, Imaged by HST, Period: 872 years,



Why It’s Hard

Premise: If there is intelligent life “out there”, it is probably similar to life as we know it on
Earth.

• Bright Star/Faint Planet: In vis-
ible light, our Sun is ten bil-
lion times brighter than Earth.
That’s 25 mags.

• Close to Each Other: A planet
at 1 AU from a star at 10 par-
secs (33 lightyears) can appear
at most 0.1 arcseconds in sepa-
ration.

• Far from Us: There are less than
100 Sun-like stars within 10 par-
secs.



Can Ground-Based Telescopes Do It?

• Atmospheric distortion limits resolution to about 1 arcsec.
Note: Resolution refers to equally bright objects.
If one is much brighter than the other, then it is more difficult.

• Segmented mirrors limit contrast

• Current adaptive optics not good enough

No they can’t (at least not yet)!

https://vanderbei.princeton.edu/tex/talks/Toronto08/open_close.gif


Can Hubble Do It?

No it can’t!

The problem is diffraction

Would have to be 1000× bigger (in each dimension!)



Telescope 6× Bigger Telescope



Concept 1: Shaped Pupil Coronagraph



Diffraction Control via Shaped Pupils



Diffraction Control via Shaped Pupils



High-Contrast Optics (d = 2)

A key goal in high-contrast imaging is to maximize light through an apodized circular aperture
subject to the constraint that virtually no light reaches a given dark zone D in the image:

maximize

∫∫
�

f (x, y)dxdy

subject to
∣∣∣f̂ (ξ, η)∣∣∣ ≤ ε f̂ (0, 0), (ξ, η) ∈ D,
f (x, y) = 0, x2 + y2 > 1,

0 ≤ f (x, y) ≤ 1, for all x, y.

Here, ε is a small positive constant (on the order of 10−5).

In general, the Fourier transform f̂ is complex valued.

As formulated, this optimization problem has a linear objective function and both linear and
second-order cone constraints.

Hence, a discretized version can be solved (to a global optimum).
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The Spergel-Kasdin-Vanderbei Pupil

Pupil Mask
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Shaped Pupil Coronagraph (TPF-C)

20 petals 150 petals

Maybe We Can!



James Webb Space Telescope (JWST)



Nancy Grace Roman Space Telescope
Repurposed NRO Spy Satellite

Similar to Hubble.
Aperture: 2.4 meters.
Central Obstruction and Spiders.
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