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Introduction

There has been so much talk about global warming.

Is it real?

Is it anthropogenic?

Global warming starts at home.

So, let’s address the question of local warming.

Has it been getting warmer in NJ?



The Data

Source: National Oceanic and Atmospheric Administration (NOAA)

Data format and downloading instructions:

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/readme.txt

List of ∼9000 weather stations posted here:

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/ish-history.txt

Shell script to grab 55 years of daily data for McGuire AFB:

http://www.princeton.edu/∼rvdb/LocalWarming/McGuireAFB/data/getData.sh

Resulting list of daily average temperatures from January 1, 1955, to August 13, 2010, is
posted here...

http://www.princeton.edu/∼rvdb/LocalWarming/McGuireAFB/data/McGuireAFB.dat

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/readme.txt
ftp://ftp.ncdc.noaa.gov/pub/data/gsod/ish-history.txt
http://www.princeton.edu/~rvdb/LocalWarming/McGuireAFB/data/getData.sh
http://www.princeton.edu/~rvdb/LocalWarming/McGuireAFB/data/McGuireAFB.dat


McGuire AFB







Daily Temperatures

McGuire AFB Data From NOAA 55+ Years (20,309 days)
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Average Daily Temperatures at McGuire AFB



Box Plots of Same
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Two Years Overlayed
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The Year 1955 (in blue) and the Year 2000 (in red)



Median Temperature by Day of Year
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Median Temp by Day of Year



Me an Temperature by Day of Year
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BoxPlot of Temperature by Day of Year
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Temperature Box Plot for each Day of the Year



Seasonal Variation Dominates

How Can We Remove The Seasonal Variation?

1. Take year-to-year differences.

2. Average.



Differences One Year Apart
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Differences One Year Apart

Mean difference: 2.89 ◦F per century. Std deviation: ±7.40 ◦F per century. Ouch!



One-Year (365 Day) Averages
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Rolling Average Year-by-Year



Year-By-Year With Regression Line
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Least-Abs-Dev Least-Squares
Average Temperature in 1955 ( ◦F ): 52.77 52.80
Rate of Temperature Change ( ◦F/century ): 3.32 3.65



One-Year vs. Six-Year Rolling Averages
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There seems to be a periodic variation!

Period ≈ 11 years.



Comparison With Solar Cycle
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A Model Using All The Data

Let Td denote the average temperature in degrees Fahrenheit on day d ∈ D where D is the
set of days from January 1, 1955, to August 13, 2010 (a whopping 20,309 days!).

Td = x0 + x1d linear trend

+ x2 cos(2πd/365.25) + x3 sin(2πd/365.25) seasonal cycle

+ x4 cos(x62πd/(10.7× 365.25)) + x5 sin(x62πd/(10.7× 365.25)) solar cycle

+ εd. error term

The parameters x0, x1, . . . , x6 are unknown regression coefficients.

Either

min
∑
d∈D

|εd| Least Absolute Deviations (LAD)

or
min

∑
d∈D

ε2d Least Squares



Linearizing the Solar Cycle

If the unknown parameter x6 is fixed at 1, forcing the solar-cycle to have a period of exactly
10.7 years, then the problem can be reduced to a linear programming problem.

If, on the other hand, we allow x6 to vary, then the problem is nonlinear and even nonconvex
and therefore harder in principle. Nonetheless, if we initialize x6 to one, then the problem
might, and in fact does, prove to be tractable.

Note: The least-absolute-deviations (LAD) model automatically ignores “outliers”.



AMPL Code For LAD Model

set DATES ordered;
param avg {DATES};

param day {DATES};

param pi := 4*atan(1);

var a {j in 0..6};

var dev {DATES} >= 0, := 1;

minimize sumdev: sum {d in DATES} dev[d];

subject to def_pos_dev {d in DATES}:

x[0] + x[1]*day[d] + x[2]*cos( 2*pi*day[d]/365.25)

+ x[3]*sin( 2*pi*day[d]/365.25)

+ x[4]*cos( x[6]*2*pi*day[d]/(10.7*365.25))

+ x[5]*sin( x[6]*2*pi*day[d]/(10.7*365.25))

- avg[d]

<= dev[d];

subject to def_neg_dev {d in DATES}:

-dev[d] <=

x[0] + x[1]*day[d] + x[2]*cos( 2*pi*day[d]/365.25)

+ x[3]*sin( 2*pi*day[d]/365.25)

+ x[4]*cos( x[6]*2*pi*day[d]/(10.7*365.25))

+ x[5]*sin( x[6]*2*pi*day[d]/(10.7*365.25))

- avg[d];



AMPL Data and Variable Initialization

data;

set DATES := include "data/Dates.dat";

param: avg := include "data/McGuireAFB.dat";

let {d in DATES} day[d] := ord(d,DATES);

let x[0] := 60;

let x[1] := 0;

let x[2] := 20;

let x[3] := 20;

let x[4] := 0.01;

let x[5] := 0.01;

let x[6] := 1;

The nice thing about ampl and loqo is that anyone can use these programs via the NEOS
server at Argonne National Labs...

http://www-neos.mcs.anl.gov/

http://www-neos.mcs.anl.gov/


The Results

The linear version of the problem solves in a small number of iterations and only takes
a minute or so on my MacBook Pro laptop computer. The nonlinear version takes more
iterations and more time but eventually converges to a solution that is almost identical to
the solution of the linear version. The optimal values of the parameters are

x0 = 52.6 ◦F

x1 = 9.95× 10−5 ◦F/day

x2 = −20.4 ◦F
x3 = −8.31 ◦F
x4 = −0.197 ◦F
x5 = 0.211 ◦F

x6 = 0.992

From x0, we see that the nominal temperature at McGuire AFB was 52.56 ◦F (on January
1, 1955).

We also see, from x1, that there is a positive trend of 0.000099 ◦F/day. That translates to
3.63 ◦F per century—in excellent agreement with results from global climate change models.

Using bootstrap, a 95% confidence interval for x1 is [2.88 ◦F, 4.38 ◦F]/century.



Magnitude of the Sinusoidal Fluctuations

From x2 and x3, we can compute the amplitude of annual seasonal changes in temperatures...√
x2
2 + x2

3 = 22.02 ◦F.

In other words, on the hottest summer day we should expect the temperature to be 22.02
degrees warmer than the nominal value of 52.56 degrees; that is, 77.58 degrees. Of course,
this is a daily average—daytime highs will be higher and nighttime lows should be about the
same amount lower.

Similarly, from x4 and x5, we can compute the amplitude of the temperature changes brought
about by the solar-cycle... √

x2
4 + x2

5 = 0.2887 ◦F.

The effect of the solar cycle is real but relatively small.

The fact that x6 came out slightly less than one indicates that the solar cycle is slightly
longer than the nominal 10.7 years. It’s closer to 10.7/x6 = 10.78 years.



Plot Showing Actual Data and Regression Curve

Blue: Average daily temperatures at McGuire AFB from 1955 to 2010.
Red: Output from least absolute deviation regression model.

Seasonal fluctuations completely dominate other effects.



Subtracting Out Seasonal Effects

As before but with sinusoidal seasonal variation removed and sinusoidal solar-cycle variation
removed as well.

Even this plot is noisy simply because there are many days in a year and some days are
unseasonably warm while others are unseasonably cool.



Smoothed Seasonally Subtracted Plot

To smooth out high frequency fluctuations, we use 101 day rolling averages of the data.

In this plot, the long term trend in temperature is clearly seen. In NJ we have local warming.



Autoregression

Modify the model as follows:

Td = x0 + x1d linear trend

+ x2 cos(2πd/365.25) + x3 sin(2πd/365.25) seasonal cycle

+ x4 cos(x62πd/(10.7× 365.25)) + x5 sin(x62πd/(10.7× 365.25)) solar cycle

+
30∑
j=1

λjTd−j autoregressive terms

+ εd error term

with the constraint
30∑
j=1

λj = 0.

The new parameters λ1, λ2, . . . , λ30 capture correlation from one day to the next.



Results

Warming rate: 3.63 ◦F per century—same as before.

lambda [*] :=
1 0.782569 9 -0.015877 17 -0.0158704 25 -0.039922
2 -0.300232 10 -0.018313 18 -0.0241674 26 -0.011331
3 0.085447 11 -0.031793 19 -0.0228709 27 -0.024117
4 -0.052355 12 -0.015495 20 -0.0102066 28 -0.023411
5 0.014926 13 -0.018906 21 -0.0130837 29 -0.006260
6 -0.026622 14 -0.023404 22 -0.0366945 30 -0.067680
7 -0.017368 15 0.008520 23 -0.0051124
8 -0.016240 16 -0.032370 24 -0.0217553



Dew Point



Plot Showing Actual Data and Regression Curve
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Average Daily Dew Points at McGuire AFB

Blue: Average Dew Points at McGuire AFB from 1955 to 2010.
Red: Output from least absolute deviation regression model.

As with temperature, seasonal fluctuations completely dominate other effects.



Subtracting Out Seasonal Effects
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Average Daily Dew Point Minus Seasonal Cycle and Solar Cycle at McGuire AFB

As previous slide but with sinusoidal seasonal variation removed and sinusoidal solar-cycle
variation removed as well.

Even this plot is noisy simply because there are many days in a year and some days are
unseasonably damp while others are unseasonably dry.



Smoothed Seasonally Subtracted Plot
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101 Day Running Average

Dew point is going up at a rate of 5.51 ◦F per century—faster than the rate at which
temperatures are increasing (3.63 ◦F per century).

In NJ we have local damping!



Why Least Absolute Deviations?

Means, Medians, and Optimization

Let b1, b2, . . . , bn denote a set of measurements.

Solving
argminx

∑
i

(x− bi)2

computes the mean.

Solving
argminx

∑
i

|x− bi|

computes the median.

Medians correspond to nonparametric statistics. Nonparametric confidence intervals are
given by percentiles. The p-th percentile is computed by solving the following optimization
problem:

argminx

∑
i

(
|x− bi| + (1− 2p)(x− bi)

)
.



Quantiles = Percentiles
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Here we plot the function

f (x) =
∑
i

(
|x− bi| + (1− 2p)(x− bi)

)
.

to be minimized and its derivative for three different values of p. The raw data are the bi’s.
There are 5 of them plotted along the x-axis. Changing p causes the function f ′(x) to slide
up or down thereby changing where it crosses zero.



Confidence Intervals For Medians

Assume that B1, B2, B3, . . . , Bn are independent identically distributed with median m.

Let
B(1) < B(2) < B(3) < · · · < B(n)

denote the order statistics, i.e., the original variables rearranged into increasing order.

Note: B(k) is the (k/n)-th sample percentile.

Then,

P(B(k) ≤ m ≤ B(k+1)) = P(Bj ≤ m for k indices and

Bj ≥ m for the remaining n− k indices)

=

(
n
k

)(
1

2

)n

.

Hence,

P(B(k) ≤ m ≤ B(n−k+1)) =
n−k∑
j=k

(
n
j

)(
1

2

)n

.

For any given n, it is easy to choose k so that
n−k∑
j=k

(
n
j

)(
1

2

)n

≈ 0.95.



Confidence Intervals For LAD Regression

Suppose we have n pairs of measurements (ai, bi), i = 1, 2, . . . , n.
We posit that there is an affine relationship between the pairs:

bi = x1 + x2ai + εi.

The εi’s are independent, identically distributed, and have median zero.
We don’t know the coefficients x1 and x2. We wish to find an estimator
and an associated confidence “interval” for these two parameters.
Following our median example, the analogous optimization problem for this regression model
is:

min
x1,x2

∑
i

(
|x1 + x2ai − bi| + (1− 2p) (x1 + x2ai − bi)

)
.

It is easy to convert this problem into a linear programming problem:

minimize
∑
i

(
δi + (1− 2p) (x1 + x2ai − bi)

)
subject to x1 + x2ai − bi≤ δi i = 1, . . . , n

−δi ≤ x1 + x2ai − bi i = 1, . . . , n.

Using the simplex method, it is straight-forward to find the pair (x∗1, x
∗
2) that achieves the

minimum for any given p, say p = 1/2.



Parametric Simplex Method

Better yet, using the parametric simplex method with p as the “parameter”, one can solve
this problem for every value of p in about the same time as the standard simplex method
solves one instance of the problem.

Starting at p = 1 and sequentially pivoting toward p = 0, the parametric simplex method
gives a set of thresholds 1 = p0 ≥ p1 ≥ p2 ≥ · · · ≥ pK = 0, at which the optimal solution
changes.

In other words, over any interval, say p ∈ [pk, pk−1], there is a certain fixed optimal solution,

call it (x(k)
1 , x

(k)
2 ).

At the intersection of two intervals, say [pk+1, pk] and [pk, pk−1], both solutions (x(k+1)
1 , x

(k+1)
2 )

and (x
(k)
1 , x

(k)
2 ) are optimal as are all convex combinations of these two solutions.



Quantile Regression Lines
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Percentile Regression Lines

Fifteen pairs of points, shown as red stars, and all of the regression lines associated with
different intervals of p-values from p = 1 at the top to p = 0 at the bottom. The line
associated with the interval that covers p = 1/2 is red and the lines within the confidence
interval, computed using all p values between pmin and pmax are shown in blue.



Full 6D Regression Model

We can compute a confidence curve in R6 for the six regression coefficients in our local
warming regression model.

On the following pages we show a few 2-dimensional projections of this curve.

Any one-dimensional projection of the confidence curve defines a confidence interval for the
associated quantity.

The 95% confidence interval for x1 is [3.588 ◦F, 3.687 ◦F]/100 yrs.

On the following page, the projection of the curve onto the vertical axis gives this interval.
Note that the confidence interval is much wider than what one would deduce from looking
just at the values associated with pmin and pmax.



Confidence Curves
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Least Squares Solution (Mean instead of Median)

Suppose we change the objective to a sum of squares of deviations:

minimize sumdev: sum {d in DATES} dev[d]^2;

The resulting model is a least squares model.
The objective function is now convex and quadratic and the problem is still easy to solve.
The solution, however, is sensitive to outliers.
Here’s the output:

x0 = 52.6 ◦F

x1 = 1.2× 10−4 ◦F/day

x2 = −20.3 ◦F
x3 = −7.97 ◦F
x4 = 0.275 ◦F

x5 = 0.454 ◦F

x6 = 0.730

In this case, the rate of local warming is 4.37 ◦F per century.
However, the model produces the wrong answer for the period of the solar cycle.



Further Remarks

Close inspection of the output shows that:

• the January 22 is the coldest day in the winter,

• July 24 is nominally the hottest day of summer, and

• February 12, 2007, was the day of the last minimum in the 10.78 year solar cycle.

The coldest day in 2011 was January 23rd. It was −2 ◦F in the morning (very cold by NJ
standards).

The ampl model and the shell scripts are available on my webpage.

Everyone is encouraged to grab data for any location they like.

Send me the results and I’ll compute a global average.



Repeat the Analysis Everywhere

Criteria: Data collection commenced prior to Jan 1, 1955 and is currently in operation. There
may be, and usually are, gaps in the data—the sight must have collected 3650 days of data
(i.e., 10 years worth).

Caveats

• No attempt was made to filter out ”bad data”.

• Seasonal variations are not sinusoidal in the tropics.

• A site need not have been in continuous operation.

• No attempt has been made to purge anomolous data.



Mean value = 4.18 ◦F per century.
Median value = 4.53 ◦F per century.
Std Dev = 2.94 ◦F per century.



Mean value = 4.18 ◦F per century.
Median value = 4.53 ◦F per century.
Std Dev = 2.94 ◦F per century.


