
Interior-Point Methods
for Nonlinear Programming

Robert Vanderbei

July 1, 2001

Erice

Operations Research and Financial Engineering, Princeton University

http://www.princeton.edu/∼rvdb

http://www.princeton.edu/~rvdb

1 Acknowledgements

• Newton

• Lagrange

• Fiacco, McCormick

• Karmarkar

• Megiddo

• Gay

• Conn, Gould, Toint, Bongartz

• Shanno, Benson

1 Acknowledgements

• Newton

• Lagrange

• Fiacco, McCormick

• Karmarkar

• Megiddo

• Gay

• Conn, Gould, Toint, Bongartz

• Shanno, Benson

1 Acknowledgements

• Newton

• Lagrange

• Fiacco, McCormick

• Karmarkar

• Megiddo

• Gay

• Conn, Gould, Toint, Bongartz

• Shanno, Benson

1 Acknowledgements

• Newton

• Lagrange

• Fiacco, McCormick

• Karmarkar

• Megiddo

• Gay

• Conn, Gould, Toint, Bongartz

• Shanno, Benson

1 Acknowledgements

• Newton

• Lagrange

• Fiacco, McCormick

• Karmarkar

• Megiddo

• Gay

• Conn, Gould, Toint, Bongartz

• Shanno, Benson

1 Acknowledgements

• Newton

• Lagrange

• Fiacco, McCormick

• Karmarkar

• Megiddo

• Gay

• Conn, Gould, Toint, Bongartz

• Shanno, Benson

1 Acknowledgements

• Newton

• Lagrange

• Fiacco, McCormick

• Karmarkar

• Megiddo

• Gay

• Conn, Gould, Toint, Bongartz

• Shanno, Benson

1 Acknowledgements

• Newton

• Lagrange

• Fiacco, McCormick

• Karmarkar

• Megiddo

• Gay

• Conn, Gould, Toint, Bongartz

• Shanno, Benson

1 Acknowledgements

• Newton

• Lagrange

• Fiacco, McCormick

• Karmarkar

• Megiddo

• Gay

• Conn, Gould, Toint, Bongartz

• Shanno, Benson

2 Outline

• Algorithm

– Basic Paradigm

– Step-Length Control

– Diagonal Perturbation

– Jamming

– Free Variables

• Some Applications

– Celestial Mechanics

– Putting on an Uneven Green

– Goddard Rocket Problem

2 Outline

• Algorithm

– Basic Paradigm

– Step-Length Control

– Diagonal Perturbation

– Jamming

– Free Variables

• Some Applications

– Celestial Mechanics

– Putting on an Uneven Green

– Goddard Rocket Problem

2 Outline

• Algorithm

– Basic Paradigm

– Step-Length Control

– Diagonal Perturbation

– Jamming

– Free Variables

• Some Applications

– Celestial Mechanics

– Putting on an Uneven Green

– Goddard Rocket Problem

2 Outline

• Algorithm

– Basic Paradigm

– Step-Length Control

– Diagonal Perturbation

– Jamming

– Free Variables

• Some Applications

– Celestial Mechanics

– Putting on an Uneven Green

– Goddard Rocket Problem

2 Outline

• Algorithm

– Basic Paradigm

– Step-Length Control

– Diagonal Perturbation

– Jamming

– Free Variables

• Some Applications

– Celestial Mechanics

– Putting on an Uneven Green

– Goddard Rocket Problem

2 Outline

• Algorithm

– Basic Paradigm

– Step-Length Control

– Diagonal Perturbation

– Jamming

– Free Variables

• Some Applications

– Celestial Mechanics

– Putting on an Uneven Green

– Goddard Rocket Problem

2 Outline

• Algorithm

– Basic Paradigm

– Step-Length Control

– Diagonal Perturbation

– Jamming

– Free Variables

• Some Applications

– Celestial Mechanics

– Putting on an Uneven Green

– Goddard Rocket Problem

2 Outline

• Algorithm

– Basic Paradigm

– Step-Length Control

– Diagonal Perturbation

– Jamming

– Free Variables

• Some Applications

– Celestial Mechanics

– Putting on an Uneven Green

– Goddard Rocket Problem

2 Outline

• Algorithm

– Basic Paradigm

– Step-Length Control

– Diagonal Perturbation

– Jamming

– Free Variables

• Some Applications

– Celestial Mechanics

– Putting on an Uneven Green

– Goddard Rocket Problem

2 Outline

• Algorithm

– Basic Paradigm

– Step-Length Control

– Diagonal Perturbation

– Jamming

– Free Variables

• Some Applications

– Celestial Mechanics

– Putting on an Uneven Green

– Goddard Rocket Problem

2 Outline

• Algorithm

– Basic Paradigm

– Step-Length Control

– Diagonal Perturbation

– Jamming

– Free Variables

• Some Applications

– Celestial Mechanics

– Putting on an Uneven Green

– Goddard Rocket Problem

The Interior-Point Algorithm

3 Introduce Slack Variables

• Start with an optimization problem—for now, the simplest NLP:

minimize f(x)

subject to hi(x) ≥ 0, i = 1, . . . , m

• Introduce slack variables to make all inequality constraints into nonnegativities:

minimize f(x)

subject to h(x) − w = 0,

w ≥ 0

3 Introduce Slack Variables

• Start with an optimization problem—for now, the simplest NLP:

minimize f(x)

subject to hi(x) ≥ 0, i = 1, . . . , m

• Introduce slack variables to make all inequality constraints into nonnegativities:

minimize f(x)

subject to h(x) − w = 0,

w ≥ 0

3 Introduce Slack Variables

• Start with an optimization problem—for now, the simplest NLP:

minimize f(x)

subject to hi(x) ≥ 0, i = 1, . . . , m

• Introduce slack variables to make all inequality constraints into nonnegativities:

minimize f(x)

subject to h(x) − w = 0,

w ≥ 0

4 Associated Log-Barrier Problem

• Replace nonnegativity constraints with logarithmic barrier terms in the objective:

minimize f(x) − µ

m∑
i=1

log(wi)

subject to h(x) − w = 0

4 Associated Log-Barrier Problem

• Replace nonnegativity constraints with logarithmic barrier terms in the objective:

minimize f(x) − µ

m∑
i=1

log(wi)

subject to h(x) − w = 0

5 First-Order Optimality Conditions

• Incorporate the equality constraints into the objective using Lagrange multipliers:

L(x, w, y) = f(x) − µ
∑m

i=1 log(wi) − yT (h(x) − w)

• Set all derivatives to zero:

∇f(x) − ∇h(x)T y = 0

−µW −1e + y = 0

h(x) − w = 0

5 First-Order Optimality Conditions

• Incorporate the equality constraints into the objective using Lagrange multipliers:

L(x, w, y) = f(x) − µ
∑m

i=1 log(wi) − yT (h(x) − w)

• Set all derivatives to zero:

∇f(x) − ∇h(x)T y = 0

−µW −1e + y = 0

h(x) − w = 0

5 First-Order Optimality Conditions

• Incorporate the equality constraints into the objective using Lagrange multipliers:

L(x, w, y) = f(x) − µ
∑m

i=1 log(wi) − yT (h(x) − w)

• Set all derivatives to zero:

∇f(x) − ∇h(x)T y = 0

−µW −1e + y = 0

h(x) − w = 0

6 Symmetrize Complementarity Conditions

• Rewrite system:

∇f(x) − ∇h(x)T y = 0

WY e = µe

h(x) − w = 0

6 Symmetrize Complementarity Conditions

• Rewrite system:

∇f(x) − ∇h(x)T y = 0

WY e = µe

h(x) − w = 0

7 Apply Newton’s Method

• Apply Newton’s method to compute search directions, ∆x, ∆w, ∆y:

H(x, y) 0 −A(x)T

0 Y W

A(x) −I 0

∆x

∆w

∆y

 =

−∇f(x) + A(x)T y

µe − WY e

−h(x) + w

 .

Here,

H(x, y) = ∇2f(x) −
∑m

i=1 yi∇2hi(x)

and

A(x) = ∇h(x)

• Note: H(x, y) is positive semidefinite if f is convex, each hi is concave, and each

yi ≥ 0.

7 Apply Newton’s Method

• Apply Newton’s method to compute search directions, ∆x, ∆w, ∆y:

H(x, y) 0 −A(x)T

0 Y W

A(x) −I 0

∆x

∆w

∆y

 =

−∇f(x) + A(x)T y

µe − WY e

−h(x) + w

 .

Here,

H(x, y) = ∇2f(x) −
∑m

i=1 yi∇2hi(x)

and

A(x) = ∇h(x)

• Note: H(x, y) is positive semidefinite if f is convex, each hi is concave, and each

yi ≥ 0.

7 Apply Newton’s Method

• Apply Newton’s method to compute search directions, ∆x, ∆w, ∆y:

H(x, y) 0 −A(x)T

0 Y W

A(x) −I 0

∆x

∆w

∆y

 =

−∇f(x) + A(x)T y

µe − WY e

−h(x) + w

 .

Here,

H(x, y) = ∇2f(x) −
∑m

i=1 yi∇2hi(x)

and

A(x) = ∇h(x)

• Note: H(x, y) is positive semidefinite if f is convex, each hi is concave, and each

yi ≥ 0.

8 Reduced KKT System

• Use second equation to solve for ∆w. Result is the reduced KKT system:

 −H(x, y) AT (x)

A(x) WY −1

 ∆x

∆y

 =

 ∇f(x) − AT (x)y

−h(x) + µY −1e

• Iterate:

x(k+1) = x(k) + α(k)∆x(k)

w(k+1) = w(k) + α(k)∆w(k)

y(k+1) = y(k) + α(k)∆y(k)

8 Reduced KKT System

• Use second equation to solve for ∆w. Result is the reduced KKT system:

 −H(x, y) AT (x)

A(x) WY −1

 ∆x

∆y

 =

 ∇f(x) − AT (x)y

−h(x) + µY −1e

• Iterate:

x(k+1) = x(k) + α(k)∆x(k)

w(k+1) = w(k) + α(k)∆w(k)

y(k+1) = y(k) + α(k)∆y(k)

8 Reduced KKT System

• Use second equation to solve for ∆w. Result is the reduced KKT system:

 −H(x, y) AT (x)

A(x) WY −1

 ∆x

∆y

 =

 ∇f(x) − AT (x)y

−h(x) + µY −1e

• Iterate:

x(k+1) = x(k) + α(k)∆x(k)

w(k+1) = w(k) + α(k)∆w(k)

y(k+1) = y(k) + α(k)∆y(k)

9 Modifications for Convex Optimization

For convex nonquadratic optimization, it does not suffice to choose the steplength α simply

to maintain positivity of nonnegative variables.

• Consider, e.g., minimizing

f(x) = (1 + x2)1/2.

• The iterates can be computed explicitly:

x(k+1) = −(x(k))3

• Converges if and only if |x| ≤ 1.

• Reason: away from 0, function is too linear.

9 Modifications for Convex Optimization

For convex nonquadratic optimization, it does not suffice to choose the steplength α simply

to maintain positivity of nonnegative variables.

• Consider, e.g., minimizing

f(x) = (1 + x2)1/2.

• The iterates can be computed explicitly:

x(k+1) = −(x(k))3

• Converges if and only if |x| ≤ 1.

• Reason: away from 0, function is too linear.

9 Modifications for Convex Optimization

For convex nonquadratic optimization, it does not suffice to choose the steplength α simply

to maintain positivity of nonnegative variables.

• Consider, e.g., minimizing

f(x) = (1 + x2)1/2.

• The iterates can be computed explicitly:

x(k+1) = −(x(k))3

• Converges if and only if |x| ≤ 1.

• Reason: away from 0, function is too linear.

9 Modifications for Convex Optimization

For convex nonquadratic optimization, it does not suffice to choose the steplength α simply

to maintain positivity of nonnegative variables.

• Consider, e.g., minimizing

f(x) = (1 + x2)1/2.

• The iterates can be computed explicitly:

x(k+1) = −(x(k))3

• Converges if and only if |x| ≤ 1.

• Reason: away from 0, function is too linear.

9 Modifications for Convex Optimization

For convex nonquadratic optimization, it does not suffice to choose the steplength α simply

to maintain positivity of nonnegative variables.

• Consider, e.g., minimizing

f(x) = (1 + x2)1/2.

• The iterates can be computed explicitly:

x(k+1) = −(x(k))3

• Converges if and only if |x| ≤ 1.

• Reason: away from 0, function is too linear.

10 Step-Length Control: Merit Function

A merit function is used to guide the choice of steplength α.

We use the Fiacco–McCormick merit function

Ψβ,µ(x, w) = f(x) − µ
∑m

i=1 log(wi) + β
2
‖h(x) − w‖2

2.

Define the dual normal matrix:

N(x, y, w) = H(x, y) + AT (x)W −1Y A(x).

Theorem 1 Suppose that N(x, y, w) is positive definite.

1. For β sufficiently large, (∆x, ∆w) is a descent direction for Ψβ,µ.

2. If current solution is primal feasible, then (∆x, ∆w) is a descent direction for the

barrier function.

Note: minimum required value for β is easy to compute.

10 Step-Length Control: Merit Function

A merit function is used to guide the choice of steplength α.

We use the Fiacco–McCormick merit function

Ψβ,µ(x, w) = f(x) − µ
∑m

i=1 log(wi) + β
2
‖h(x) − w‖2

2.

Define the dual normal matrix:

N(x, y, w) = H(x, y) + AT (x)W −1Y A(x).

Theorem 1 Suppose that N(x, y, w) is positive definite.

1. For β sufficiently large, (∆x, ∆w) is a descent direction for Ψβ,µ.

2. If current solution is primal feasible, then (∆x, ∆w) is a descent direction for the

barrier function.

Note: minimum required value for β is easy to compute.

10 Step-Length Control: Merit Function

A merit function is used to guide the choice of steplength α.

We use the Fiacco–McCormick merit function

Ψβ,µ(x, w) = f(x) − µ
∑m

i=1 log(wi) + β
2
‖h(x) − w‖2

2.

Define the dual normal matrix:

N(x, y, w) = H(x, y) + AT (x)W −1Y A(x).

Theorem 1 Suppose that N(x, y, w) is positive definite.

1. For β sufficiently large, (∆x, ∆w) is a descent direction for Ψβ,µ.

2. If current solution is primal feasible, then (∆x, ∆w) is a descent direction for the

barrier function.

Note: minimum required value for β is easy to compute.

10 Step-Length Control: Merit Function

A merit function is used to guide the choice of steplength α.

We use the Fiacco–McCormick merit function

Ψβ,µ(x, w) = f(x) − µ
∑m

i=1 log(wi) + β
2
‖h(x) − w‖2

2.

Define the dual normal matrix:

N(x, y, w) = H(x, y) + AT (x)W −1Y A(x).

Theorem 1 Suppose that N(x, y, w) is positive definite.

1. For β sufficiently large, (∆x, ∆w) is a descent direction for Ψβ,µ.

2. If current solution is primal feasible, then (∆x, ∆w) is a descent direction for the

barrier function.

Note: minimum required value for β is easy to compute.

10 Step-Length Control: Merit Function

A merit function is used to guide the choice of steplength α.

We use the Fiacco–McCormick merit function

Ψβ,µ(x, w) = f(x) − µ
∑m

i=1 log(wi) + β
2
‖h(x) − w‖2

2.

Define the dual normal matrix:

N(x, y, w) = H(x, y) + AT (x)W −1Y A(x).

Theorem 1 Suppose that N(x, y, w) is positive definite.

1. For β sufficiently large, (∆x, ∆w) is a descent direction for Ψβ,µ.

2. If current solution is primal feasible, then (∆x, ∆w) is a descent direction for the

barrier function.

Note: minimum required value for β is easy to compute.

10 Step-Length Control: Merit Function

A merit function is used to guide the choice of steplength α.

We use the Fiacco–McCormick merit function

Ψβ,µ(x, w) = f(x) − µ
∑m

i=1 log(wi) + β
2
‖h(x) − w‖2

2.

Define the dual normal matrix:

N(x, y, w) = H(x, y) + AT (x)W −1Y A(x).

Theorem 1 Suppose that N(x, y, w) is positive definite.

1. For β sufficiently large, (∆x, ∆w) is a descent direction for Ψβ,µ.

2. If current solution is primal feasible, then (∆x, ∆w) is a descent direction for the

barrier function.

Note: minimum required value for β is easy to compute.

10 Step-Length Control: Merit Function

A merit function is used to guide the choice of steplength α.

We use the Fiacco–McCormick merit function

Ψβ,µ(x, w) = f(x) − µ
∑m

i=1 log(wi) + β
2
‖h(x) − w‖2

2.

Define the dual normal matrix:

N(x, y, w) = H(x, y) + AT (x)W −1Y A(x).

Theorem 1 Suppose that N(x, y, w) is positive definite.

1. For β sufficiently large, (∆x, ∆w) is a descent direction for Ψβ,µ.

2. If current solution is primal feasible, then (∆x, ∆w) is a descent direction for the

barrier function.

Note: minimum required value for β is easy to compute.

10 Step-Length Control: Merit Function

A merit function is used to guide the choice of steplength α.

We use the Fiacco–McCormick merit function

Ψβ,µ(x, w) = f(x) − µ
∑m

i=1 log(wi) + β
2
‖h(x) − w‖2

2.

Define the dual normal matrix:

N(x, y, w) = H(x, y) + AT (x)W −1Y A(x).

Theorem 1 Suppose that N(x, y, w) is positive definite.

1. For β sufficiently large, (∆x, ∆w) is a descent direction for Ψβ,µ.

2. If current solution is primal feasible, then (∆x, ∆w) is a descent direction for the

barrier function.

Note: minimum required value for β is easy to compute.

11 Nonconvex Optimization: Diagonal Perturbation

• If H(x, y) is not positive semidefinite then N(x, y, w) might fail to be positive definite.

• In such a case, we lose the descent properties given in previous theorem.

• To regain those properties, we perturb the Hessian: H̃(x, y) = H(x, y) + λI.

• And compute search directions using H̃ instead of H.

Notation: let Ñ denote the dual normal matrix associated with H̃.

Theorem 2 If Ñ is positive definite, then (∆x, ∆w, ∆y) is a descent direction for

1. the primal infeasibility, ‖h(x) − w‖;

2. the noncomplementarity, wT y.

11 Nonconvex Optimization: Diagonal Perturbation

• If H(x, y) is not positive semidefinite then N(x, y, w) might fail to be positive definite.

• In such a case, we lose the descent properties given in previous theorem.

• To regain those properties, we perturb the Hessian: H̃(x, y) = H(x, y) + λI.

• And compute search directions using H̃ instead of H.

Notation: let Ñ denote the dual normal matrix associated with H̃.

Theorem 2 If Ñ is positive definite, then (∆x, ∆w, ∆y) is a descent direction for

1. the primal infeasibility, ‖h(x) − w‖;

2. the noncomplementarity, wT y.

11 Nonconvex Optimization: Diagonal Perturbation

• If H(x, y) is not positive semidefinite then N(x, y, w) might fail to be positive definite.

• In such a case, we lose the descent properties given in previous theorem.

• To regain those properties, we perturb the Hessian: H̃(x, y) = H(x, y) + λI.

• And compute search directions using H̃ instead of H.

Notation: let Ñ denote the dual normal matrix associated with H̃.

Theorem 2 If Ñ is positive definite, then (∆x, ∆w, ∆y) is a descent direction for

1. the primal infeasibility, ‖h(x) − w‖;

2. the noncomplementarity, wT y.

11 Nonconvex Optimization: Diagonal Perturbation

• If H(x, y) is not positive semidefinite then N(x, y, w) might fail to be positive definite.

• In such a case, we lose the descent properties given in previous theorem.

• To regain those properties, we perturb the Hessian: H̃(x, y) = H(x, y) + λI.

• And compute search directions using H̃ instead of H.

Notation: let Ñ denote the dual normal matrix associated with H̃.

Theorem 2 If Ñ is positive definite, then (∆x, ∆w, ∆y) is a descent direction for

1. the primal infeasibility, ‖h(x) − w‖;

2. the noncomplementarity, wT y.

11 Nonconvex Optimization: Diagonal Perturbation

• If H(x, y) is not positive semidefinite then N(x, y, w) might fail to be positive definite.

• In such a case, we lose the descent properties given in previous theorem.

• To regain those properties, we perturb the Hessian: H̃(x, y) = H(x, y) + λI.

• And compute search directions using H̃ instead of H.

Notation: let Ñ denote the dual normal matrix associated with H̃.

Theorem 2 If Ñ is positive definite, then (∆x, ∆w, ∆y) is a descent direction for

1. the primal infeasibility, ‖h(x) − w‖;

2. the noncomplementarity, wT y.

11 Nonconvex Optimization: Diagonal Perturbation

• If H(x, y) is not positive semidefinite then N(x, y, w) might fail to be positive definite.

• In such a case, we lose the descent properties given in previous theorem.

• To regain those properties, we perturb the Hessian: H̃(x, y) = H(x, y) + λI.

• And compute search directions using H̃ instead of H.

Notation: let Ñ denote the dual normal matrix associated with H̃.

Theorem 2 If Ñ is positive definite, then (∆x, ∆w, ∆y) is a descent direction for

1. the primal infeasibility, ‖h(x) − w‖;

2. the noncomplementarity, wT y.

11 Nonconvex Optimization: Diagonal Perturbation

• If H(x, y) is not positive semidefinite then N(x, y, w) might fail to be positive definite.

• In such a case, we lose the descent properties given in previous theorem.

• To regain those properties, we perturb the Hessian: H̃(x, y) = H(x, y) + λI.

• And compute search directions using H̃ instead of H.

Notation: let Ñ denote the dual normal matrix associated with H̃.

Theorem 2 If Ñ is positive definite, then (∆x, ∆w, ∆y) is a descent direction for

1. the primal infeasibility, ‖h(x) − w‖;

2. the noncomplementarity, wT y.

11 Nonconvex Optimization: Diagonal Perturbation

• If H(x, y) is not positive semidefinite then N(x, y, w) might fail to be positive definite.

• In such a case, we lose the descent properties given in previous theorem.

• To regain those properties, we perturb the Hessian: H̃(x, y) = H(x, y) + λI.

• And compute search directions using H̃ instead of H.

Notation: let Ñ denote the dual normal matrix associated with H̃.

Theorem 2 If Ñ is positive definite, then (∆x, ∆w, ∆y) is a descent direction for

1. the primal infeasibility, ‖h(x) − w‖;

2. the noncomplementarity, wT y.

11 Nonconvex Optimization: Diagonal Perturbation

• If H(x, y) is not positive semidefinite then N(x, y, w) might fail to be positive definite.

• In such a case, we lose the descent properties given in previous theorem.

• To regain those properties, we perturb the Hessian: H̃(x, y) = H(x, y) + λI.

• And compute search directions using H̃ instead of H.

Notation: let Ñ denote the dual normal matrix associated with H̃.

Theorem 2 If Ñ is positive definite, then (∆x, ∆w, ∆y) is a descent direction for

1. the primal infeasibility, ‖h(x) − w‖;

2. the noncomplementarity, wT y.

11 Nonconvex Optimization: Diagonal Perturbation

• If H(x, y) is not positive semidefinite then N(x, y, w) might fail to be positive definite.

• In such a case, we lose the descent properties given in previous theorem.

• To regain those properties, we perturb the Hessian: H̃(x, y) = H(x, y) + λI.

• And compute search directions using H̃ instead of H.

Notation: let Ñ denote the dual normal matrix associated with H̃.

Theorem 2 If Ñ is positive definite, then (∆x, ∆w, ∆y) is a descent direction for

1. the primal infeasibility, ‖h(x) − w‖;

2. the noncomplementarity, wT y.

12 Notes:

• Not necessarily a descent direction for dual infeasibility.

• A line search is performed to find a value of λ within a factor of 2 of the smallest

permissible value.

12 Notes:

• Not necessarily a descent direction for dual infeasibility.

• A line search is performed to find a value of λ within a factor of 2 of the smallest

permissible value.

12 Notes:

• Not necessarily a descent direction for dual infeasibility.

• A line search is performed to find a value of λ within a factor of 2 of the smallest

permissible value.

13 Nonconvex Optimization: Jamming

Theorem 3 If the problem is convex and and the current solution is not optimal and ..., then

for any slack variable, say wi, we have wi = 0 implies ∆wi ≥ 0.

• To paraphrase: for convex problems, as slack variables get small they tend to get large

again. This is an antijamming theorem.

• A recent example of Wächter and Biegler shows that for nonconvex problems, jamming

really can occur.

• Recent modification:

– if a slack variable gets small and

– its component of the step direction contributes to making a very short step,

– then increase this slack variable to the average size of the variables the

“mainstream” slack variables.

• This modification corrects all examples of jamming that we know about.

13 Nonconvex Optimization: Jamming

Theorem 3 If the problem is convex and and the current solution is not optimal and ..., then

for any slack variable, say wi, we have wi = 0 implies ∆wi ≥ 0.

• To paraphrase: for convex problems, as slack variables get small they tend to get large

again. This is an antijamming theorem.

• A recent example of Wächter and Biegler shows that for nonconvex problems, jamming

really can occur.

• Recent modification:

– if a slack variable gets small and

– its component of the step direction contributes to making a very short step,

– then increase this slack variable to the average size of the variables the

“mainstream” slack variables.

• This modification corrects all examples of jamming that we know about.

13 Nonconvex Optimization: Jamming

Theorem 3 If the problem is convex and and the current solution is not optimal and ..., then

for any slack variable, say wi, we have wi = 0 implies ∆wi ≥ 0.

• To paraphrase: for convex problems, as slack variables get small they tend to get large

again. This is an antijamming theorem.

• A recent example of Wächter and Biegler shows that for nonconvex problems, jamming

really can occur.

• Recent modification:

– if a slack variable gets small and

– its component of the step direction contributes to making a very short step,

– then increase this slack variable to the average size of the variables the

“mainstream” slack variables.

• This modification corrects all examples of jamming that we know about.

13 Nonconvex Optimization: Jamming

Theorem 3 If the problem is convex and and the current solution is not optimal and ..., then

for any slack variable, say wi, we have wi = 0 implies ∆wi ≥ 0.

• To paraphrase: for convex problems, as slack variables get small they tend to get large

again. This is an antijamming theorem.

• A recent example of Wächter and Biegler shows that for nonconvex problems, jamming

really can occur.

• Recent modification:

– if a slack variable gets small and

– its component of the step direction contributes to making a very short step,

– then increase this slack variable to the average size of the variables the

“mainstream” slack variables.

• This modification corrects all examples of jamming that we know about.

13 Nonconvex Optimization: Jamming

Theorem 3 If the problem is convex and and the current solution is not optimal and ..., then

for any slack variable, say wi, we have wi = 0 implies ∆wi ≥ 0.

• To paraphrase: for convex problems, as slack variables get small they tend to get large

again. This is an antijamming theorem.

• A recent example of Wächter and Biegler shows that for nonconvex problems, jamming

really can occur.

• Recent modification:

– if a slack variable gets small and

– its component of the step direction contributes to making a very short step,

– then increase this slack variable to the average size of the variables the

“mainstream” slack variables.

• This modification corrects all examples of jamming that we know about.

13 Nonconvex Optimization: Jamming

Theorem 3 If the problem is convex and and the current solution is not optimal and ..., then

for any slack variable, say wi, we have wi = 0 implies ∆wi ≥ 0.

• To paraphrase: for convex problems, as slack variables get small they tend to get large

again. This is an antijamming theorem.

• A recent example of Wächter and Biegler shows that for nonconvex problems, jamming

really can occur.

• Recent modification:

– if a slack variable gets small and

– its component of the step direction contributes to making a very short step,

– then increase this slack variable to the average size of the variables the

“mainstream” slack variables.

• This modification corrects all examples of jamming that we know about.

13 Nonconvex Optimization: Jamming

Theorem 3 If the problem is convex and and the current solution is not optimal and ..., then

for any slack variable, say wi, we have wi = 0 implies ∆wi ≥ 0.

• To paraphrase: for convex problems, as slack variables get small they tend to get large

again. This is an antijamming theorem.

• A recent example of Wächter and Biegler shows that for nonconvex problems, jamming

really can occur.

• Recent modification:

– if a slack variable gets small and

– its component of the step direction contributes to making a very short step,

– then increase this slack variable to the average size of the variables the

“mainstream” slack variables.

• This modification corrects all examples of jamming that we know about.

13 Nonconvex Optimization: Jamming

Theorem 3 If the problem is convex and and the current solution is not optimal and ..., then

for any slack variable, say wi, we have wi = 0 implies ∆wi ≥ 0.

• To paraphrase: for convex problems, as slack variables get small they tend to get large

again. This is an antijamming theorem.

• A recent example of Wächter and Biegler shows that for nonconvex problems, jamming

really can occur.

• Recent modification:

– if a slack variable gets small and

– its component of the step direction contributes to making a very short step,

– then increase this slack variable to the average size of the variables the

“mainstream” slack variables.

• This modification corrects all examples of jamming that we know about.

13 Nonconvex Optimization: Jamming

Theorem 3 If the problem is convex and and the current solution is not optimal and ..., then

for any slack variable, say wi, we have wi = 0 implies ∆wi ≥ 0.

• To paraphrase: for convex problems, as slack variables get small they tend to get large

again. This is an antijamming theorem.

• A recent example of Wächter and Biegler shows that for nonconvex problems, jamming

really can occur.

• Recent modification:

– if a slack variable gets small and

– its component of the step direction contributes to making a very short step,

– then increase this slack variable to the average size of the variables the

“mainstream” slack variables.

• This modification corrects all examples of jamming that we know about.

14 Modifications for General Problem Formulations

• Bounds, ranges, and free variables are all treated implicitly as described in Linear

Programming: Foundations and Extensions (LP:F&E).

• Net result is following reduced KKT system: −(H(x, y) + D) AT (x)

A(x) E

 ∆x

∆y

 =

 Φ1

Φ2

• Here, D and E are positive definite diagonal matrices.

• Note that D helps reduce frequency of diagonal perturbation.

• Choice of barrier parameter µ and initial solution, if none is provided, is described in the

paper.

• Stopping rules, matrix reordering heuristics, etc. are as described in LP:F&E.

14 Modifications for General Problem Formulations

• Bounds, ranges, and free variables are all treated implicitly as described in Linear

Programming: Foundations and Extensions (LP:F&E).

• Net result is following reduced KKT system: −(H(x, y) + D) AT (x)

A(x) E

 ∆x

∆y

 =

 Φ1

Φ2

• Here, D and E are positive definite diagonal matrices.

• Note that D helps reduce frequency of diagonal perturbation.

• Choice of barrier parameter µ and initial solution, if none is provided, is described in the

paper.

• Stopping rules, matrix reordering heuristics, etc. are as described in LP:F&E.

14 Modifications for General Problem Formulations

• Bounds, ranges, and free variables are all treated implicitly as described in Linear

Programming: Foundations and Extensions (LP:F&E).

• Net result is following reduced KKT system: −(H(x, y) + D) AT (x)

A(x) E

 ∆x

∆y

 =

 Φ1

Φ2

• Here, D and E are positive definite diagonal matrices.

• Note that D helps reduce frequency of diagonal perturbation.

• Choice of barrier parameter µ and initial solution, if none is provided, is described in the

paper.

• Stopping rules, matrix reordering heuristics, etc. are as described in LP:F&E.

14 Modifications for General Problem Formulations

• Bounds, ranges, and free variables are all treated implicitly as described in Linear

Programming: Foundations and Extensions (LP:F&E).

• Net result is following reduced KKT system: −(H(x, y) + D) AT (x)

A(x) E

 ∆x

∆y

 =

 Φ1

Φ2

• Here, D and E are positive definite diagonal matrices.

• Note that D helps reduce frequency of diagonal perturbation.

• Choice of barrier parameter µ and initial solution, if none is provided, is described in the

paper.

• Stopping rules, matrix reordering heuristics, etc. are as described in LP:F&E.

14 Modifications for General Problem Formulations

• Bounds, ranges, and free variables are all treated implicitly as described in Linear

Programming: Foundations and Extensions (LP:F&E).

• Net result is following reduced KKT system: −(H(x, y) + D) AT (x)

A(x) E

 ∆x

∆y

 =

 Φ1

Φ2

• Here, D and E are positive definite diagonal matrices.

• Note that D helps reduce frequency of diagonal perturbation.

• Choice of barrier parameter µ and initial solution, if none is provided, is described in the

paper.

• Stopping rules, matrix reordering heuristics, etc. are as described in LP:F&E.

14 Modifications for General Problem Formulations

• Bounds, ranges, and free variables are all treated implicitly as described in Linear

Programming: Foundations and Extensions (LP:F&E).

• Net result is following reduced KKT system: −(H(x, y) + D) AT (x)

A(x) E

 ∆x

∆y

 =

 Φ1

Φ2

• Here, D and E are positive definite diagonal matrices.

• Note that D helps reduce frequency of diagonal perturbation.

• Choice of barrier parameter µ and initial solution, if none is provided, is described in the

paper.

• Stopping rules, matrix reordering heuristics, etc. are as described in LP:F&E.

14 Modifications for General Problem Formulations

• Bounds, ranges, and free variables are all treated implicitly as described in Linear

Programming: Foundations and Extensions (LP:F&E).

• Net result is following reduced KKT system: −(H(x, y) + D) AT (x)

A(x) E

 ∆x

∆y

 =

 Φ1

Φ2

• Here, D and E are positive definite diagonal matrices.

• Note that D helps reduce frequency of diagonal perturbation.

• Choice of barrier parameter µ and initial solution, if none is provided, is described in the

paper.

• Stopping rules, matrix reordering heuristics, etc. are as described in LP:F&E.

15 Focus of Free Variables

• For each free variable, say xj , we introduce a new constraint expressing the variable as
a difference between two nonnegative variables:

xj = gj − tj, gj ≥ 0, tj ≥ 0.

• The variable xj is not removed from the problem.

• The Newton system involves new rows/columns corresponding to the new constraints
and variables.

• These new rows/columns are eliminated algebraically to produce a reduced KKT
system with the original dimensions.

• The net result is an entry in the diagonal matrix D in H(x, y) + D.

• Letting djj denote the diagonal entry of D, we have

djj =

(
gj

zj
+

tj

sj

)−1

,

where zj (sj) is a dual variable complementary to gj (tj , respectively).

• We see that the net effect is a regularization of the reduced KKT system.

15 Focus of Free Variables

• For each free variable, say xj , we introduce a new constraint expressing the variable as
a difference between two nonnegative variables:

xj = gj − tj, gj ≥ 0, tj ≥ 0.

• The variable xj is not removed from the problem.

• The Newton system involves new rows/columns corresponding to the new constraints
and variables.

• These new rows/columns are eliminated algebraically to produce a reduced KKT
system with the original dimensions.

• The net result is an entry in the diagonal matrix D in H(x, y) + D.

• Letting djj denote the diagonal entry of D, we have

djj =

(
gj

zj
+

tj

sj

)−1

,

where zj (sj) is a dual variable complementary to gj (tj , respectively).

• We see that the net effect is a regularization of the reduced KKT system.

15 Focus of Free Variables

• For each free variable, say xj , we introduce a new constraint expressing the variable as
a difference between two nonnegative variables:

xj = gj − tj, gj ≥ 0, tj ≥ 0.

• The variable xj is not removed from the problem.

• The Newton system involves new rows/columns corresponding to the new constraints
and variables.

• These new rows/columns are eliminated algebraically to produce a reduced KKT
system with the original dimensions.

• The net result is an entry in the diagonal matrix D in H(x, y) + D.

• Letting djj denote the diagonal entry of D, we have

djj =

(
gj

zj
+

tj

sj

)−1

,

where zj (sj) is a dual variable complementary to gj (tj , respectively).

• We see that the net effect is a regularization of the reduced KKT system.

15 Focus of Free Variables

• For each free variable, say xj , we introduce a new constraint expressing the variable as
a difference between two nonnegative variables:

xj = gj − tj, gj ≥ 0, tj ≥ 0.

• The variable xj is not removed from the problem.

• The Newton system involves new rows/columns corresponding to the new constraints
and variables.

• These new rows/columns are eliminated algebraically to produce a reduced KKT
system with the original dimensions.

• The net result is an entry in the diagonal matrix D in H(x, y) + D.

• Letting djj denote the diagonal entry of D, we have

djj =

(
gj

zj
+

tj

sj

)−1

,

where zj (sj) is a dual variable complementary to gj (tj , respectively).

• We see that the net effect is a regularization of the reduced KKT system.

15 Focus of Free Variables

• For each free variable, say xj , we introduce a new constraint expressing the variable as
a difference between two nonnegative variables:

xj = gj − tj, gj ≥ 0, tj ≥ 0.

• The variable xj is not removed from the problem.

• The Newton system involves new rows/columns corresponding to the new constraints
and variables.

• These new rows/columns are eliminated algebraically to produce a reduced KKT
system with the original dimensions.

• The net result is an entry in the diagonal matrix D in H(x, y) + D.

• Letting djj denote the diagonal entry of D, we have

djj =

(
gj

zj
+

tj

sj

)−1

,

where zj (sj) is a dual variable complementary to gj (tj , respectively).

• We see that the net effect is a regularization of the reduced KKT system.

15 Focus of Free Variables

• For each free variable, say xj , we introduce a new constraint expressing the variable as
a difference between two nonnegative variables:

xj = gj − tj, gj ≥ 0, tj ≥ 0.

• The variable xj is not removed from the problem.

• The Newton system involves new rows/columns corresponding to the new constraints
and variables.

• These new rows/columns are eliminated algebraically to produce a reduced KKT
system with the original dimensions.

• The net result is an entry in the diagonal matrix D in H(x, y) + D.

• Letting djj denote the diagonal entry of D, we have

djj =

(
gj

zj
+

tj

sj

)−1

,

where zj (sj) is a dual variable complementary to gj (tj , respectively).

• We see that the net effect is a regularization of the reduced KKT system.

15 Focus of Free Variables

• For each free variable, say xj , we introduce a new constraint expressing the variable as
a difference between two nonnegative variables:

xj = gj − tj, gj ≥ 0, tj ≥ 0.

• The variable xj is not removed from the problem.

• The Newton system involves new rows/columns corresponding to the new constraints
and variables.

• These new rows/columns are eliminated algebraically to produce a reduced KKT
system with the original dimensions.

• The net result is an entry in the diagonal matrix D in H(x, y) + D.

• Letting djj denote the diagonal entry of D, we have

djj =

(
gj

zj
+

tj

sj

)−1

,

where zj (sj) is a dual variable complementary to gj (tj , respectively).

• We see that the net effect is a regularization of the reduced KKT system.

15 Focus of Free Variables

• For each free variable, say xj , we introduce a new constraint expressing the variable as
a difference between two nonnegative variables:

xj = gj − tj, gj ≥ 0, tj ≥ 0.

• The variable xj is not removed from the problem.

• The Newton system involves new rows/columns corresponding to the new constraints
and variables.

• These new rows/columns are eliminated algebraically to produce a reduced KKT
system with the original dimensions.

• The net result is an entry in the diagonal matrix D in H(x, y) + D.

• Letting djj denote the diagonal entry of D, we have

djj =

(
gj

zj
+

tj

sj

)−1

,

where zj (sj) is a dual variable complementary to gj (tj , respectively).

• We see that the net effect is a regularization of the reduced KKT system.

Some Applications

16 Celestial Mechanics—Periodic Orbits

• Find periodic orbits for the planar gravitational n-body problem.

• Minimize action: ∫ 2π

0
(K(t) − P (t))dt,

• where K(t) is kinetic energy,

K(t) =
1

2

∑
i

(
ẋ2

i (t) + ẏ2
i (t)

)
,

• and P (t) is potential energy,

P (t) = −
∑
i<j

1√
(xi(t) − xj(t))2 + (yi(t) − yj(t))2

.

• Subject to periodicity constraints:

xi(2π) = xi(0), yi(2π) = yi(0).

16 Celestial Mechanics—Periodic Orbits

• Find periodic orbits for the planar gravitational n-body problem.

• Minimize action: ∫ 2π

0
(K(t) − P (t))dt,

• where K(t) is kinetic energy,

K(t) =
1

2

∑
i

(
ẋ2

i (t) + ẏ2
i (t)

)
,

• and P (t) is potential energy,

P (t) = −
∑
i<j

1√
(xi(t) − xj(t))2 + (yi(t) − yj(t))2

.

• Subject to periodicity constraints:

xi(2π) = xi(0), yi(2π) = yi(0).

16 Celestial Mechanics—Periodic Orbits

• Find periodic orbits for the planar gravitational n-body problem.

• Minimize action: ∫ 2π

0
(K(t) − P (t))dt,

• where K(t) is kinetic energy,

K(t) =
1

2

∑
i

(
ẋ2

i (t) + ẏ2
i (t)

)
,

• and P (t) is potential energy,

P (t) = −
∑
i<j

1√
(xi(t) − xj(t))2 + (yi(t) − yj(t))2

.

• Subject to periodicity constraints:

xi(2π) = xi(0), yi(2π) = yi(0).

16 Celestial Mechanics—Periodic Orbits

• Find periodic orbits for the planar gravitational n-body problem.

• Minimize action: ∫ 2π

0
(K(t) − P (t))dt,

• where K(t) is kinetic energy,

K(t) =
1

2

∑
i

(
ẋ2

i (t) + ẏ2
i (t)

)
,

• and P (t) is potential energy,

P (t) = −
∑
i<j

1√
(xi(t) − xj(t))2 + (yi(t) − yj(t))2

.

• Subject to periodicity constraints:

xi(2π) = xi(0), yi(2π) = yi(0).

16 Celestial Mechanics—Periodic Orbits

• Find periodic orbits for the planar gravitational n-body problem.

• Minimize action: ∫ 2π

0
(K(t) − P (t))dt,

• where K(t) is kinetic energy,

K(t) =
1

2

∑
i

(
ẋ2

i (t) + ẏ2
i (t)

)
,

• and P (t) is potential energy,

P (t) = −
∑
i<j

1√
(xi(t) − xj(t))2 + (yi(t) − yj(t))2

.

• Subject to periodicity constraints:

xi(2π) = xi(0), yi(2π) = yi(0).

16 Celestial Mechanics—Periodic Orbits

• Find periodic orbits for the planar gravitational n-body problem.

• Minimize action: ∫ 2π

0
(K(t) − P (t))dt,

• where K(t) is kinetic energy,

K(t) =
1

2

∑
i

(
ẋ2

i (t) + ẏ2
i (t)

)
,

• and P (t) is potential energy,

P (t) = −
∑
i<j

1√
(xi(t) − xj(t))2 + (yi(t) − yj(t))2

.

• Subject to periodicity constraints:

xi(2π) = xi(0), yi(2π) = yi(0).

17 Specific Example

Orbits.mod with n = 3 and (0, 2π) discretized into a 160 pieces gives the following results:

constraints 0

variables 960

time (secs)

LOQO 1.1

LANCELOT 8.7

SNOPT 287 (no change for last 80% of iterations)

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

"after.out"

C:/user/rvdb/public_html/JAVA/astro/galaxy/Galaxy.html

18 Putting on an Uneven Green

Given:

• z(x, y) elevation of the green.

• Starting position of the ball (x0, y0).

• Position of hole (xf , yf).

• Coefficient of friction µ.

Find: initial velocity vector so that ball will roll to the hole and arrive with minimal speed.

Variables:

• u(t) = (x(t), y(t), z(t))—position as a function of time t.

• v(t) = (vx(t), vy(t), vz(t))—velocity.

• a(t) = (ax(t), ay(t), az(t))—acceleration.

• T —time at which ball arrives at hole.

18 Putting on an Uneven Green

Given:

• z(x, y) elevation of the green.

• Starting position of the ball (x0, y0).

• Position of hole (xf , yf).

• Coefficient of friction µ.

Find: initial velocity vector so that ball will roll to the hole and arrive with minimal speed.

Variables:

• u(t) = (x(t), y(t), z(t))—position as a function of time t.

• v(t) = (vx(t), vy(t), vz(t))—velocity.

• a(t) = (ax(t), ay(t), az(t))—acceleration.

• T —time at which ball arrives at hole.

18 Putting on an Uneven Green

Given:

• z(x, y) elevation of the green.

• Starting position of the ball (x0, y0).

• Position of hole (xf , yf).

• Coefficient of friction µ.

Find: initial velocity vector so that ball will roll to the hole and arrive with minimal speed.

Variables:

• u(t) = (x(t), y(t), z(t))—position as a function of time t.

• v(t) = (vx(t), vy(t), vz(t))—velocity.

• a(t) = (ax(t), ay(t), az(t))—acceleration.

• T —time at which ball arrives at hole.

18 Putting on an Uneven Green

Given:

• z(x, y) elevation of the green.

• Starting position of the ball (x0, y0).

• Position of hole (xf , yf).

• Coefficient of friction µ.

Find: initial velocity vector so that ball will roll to the hole and arrive with minimal speed.

Variables:

• u(t) = (x(t), y(t), z(t))—position as a function of time t.

• v(t) = (vx(t), vy(t), vz(t))—velocity.

• a(t) = (ax(t), ay(t), az(t))—acceleration.

• T —time at which ball arrives at hole.

19 Putting—Two Approaches

• Problem can be formulated with two decision variables:

vx(0) and vy(0)

and two constraints:

x(T) = xf and y(T) = yf .

In this case, x(T), y(T), and the objective function are complicated functions of the two

variables that can only be computed by integrating the appropriate differential equation.

• A discretization of the complete trajectory (including position, velocity, and acceleration)

can be taken as variables and the physical laws encoded in the differential equation can

be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition

to the quantities being sought, first and possibly second derivatives of those quantities with

respect to the decision variables.

The modern trend is to follow the second approach.

19 Putting—Two Approaches

• Problem can be formulated with two decision variables:

vx(0) and vy(0)

and two constraints:

x(T) = xf and y(T) = yf .

In this case, x(T), y(T), and the objective function are complicated functions of the two

variables that can only be computed by integrating the appropriate differential equation.

• A discretization of the complete trajectory (including position, velocity, and acceleration)

can be taken as variables and the physical laws encoded in the differential equation can

be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition

to the quantities being sought, first and possibly second derivatives of those quantities with

respect to the decision variables.

The modern trend is to follow the second approach.

19 Putting—Two Approaches

• Problem can be formulated with two decision variables:

vx(0) and vy(0)

and two constraints:

x(T) = xf and y(T) = yf .

In this case, x(T), y(T), and the objective function are complicated functions of the two

variables that can only be computed by integrating the appropriate differential equation.

• A discretization of the complete trajectory (including position, velocity, and acceleration)

can be taken as variables and the physical laws encoded in the differential equation can

be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition

to the quantities being sought, first and possibly second derivatives of those quantities with

respect to the decision variables.

The modern trend is to follow the second approach.

19 Putting—Two Approaches

• Problem can be formulated with two decision variables:

vx(0) and vy(0)

and two constraints:

x(T) = xf and y(T) = yf .

In this case, x(T), y(T), and the objective function are complicated functions of the two

variables that can only be computed by integrating the appropriate differential equation.

• A discretization of the complete trajectory (including position, velocity, and acceleration)

can be taken as variables and the physical laws encoded in the differential equation can

be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition

to the quantities being sought, first and possibly second derivatives of those quantities with

respect to the decision variables.

The modern trend is to follow the second approach.

19 Putting—Two Approaches

• Problem can be formulated with two decision variables:

vx(0) and vy(0)

and two constraints:

x(T) = xf and y(T) = yf .

In this case, x(T), y(T), and the objective function are complicated functions of the two

variables that can only be computed by integrating the appropriate differential equation.

• A discretization of the complete trajectory (including position, velocity, and acceleration)

can be taken as variables and the physical laws encoded in the differential equation can

be written as constraints.

To implement the first approach, one would need an ode integrator that provides, in addition

to the quantities being sought, first and possibly second derivatives of those quantities with

respect to the decision variables.

The modern trend is to follow the second approach.

20 Putting—Continued

Objective:

minimize vx(T)2 + vy(T)2.

Constraints:

v = u̇

a = v̇

ma = N + F − mgez

u(0) = u0 u(T) = uf ,

where

• m is the mass of the golf ball.

• g is the acceleration due to gravity.

• ez is a unit vector in the positive z direction.

and ...

20 Putting—Continued

Objective:

minimize vx(T)2 + vy(T)2.

Constraints:

v = u̇

a = v̇

ma = N + F − mgez

u(0) = u0 u(T) = uf ,

where

• m is the mass of the golf ball.

• g is the acceleration due to gravity.

• ez is a unit vector in the positive z direction.

and ...

20 Putting—Continued

Objective:

minimize vx(T)2 + vy(T)2.

Constraints:

v = u̇

a = v̇

ma = N + F − mgez

u(0) = u0 u(T) = uf ,

where

• m is the mass of the golf ball.

• g is the acceleration due to gravity.

• ez is a unit vector in the positive z direction.

and ...

20 Putting—Continued

Objective:

minimize vx(T)2 + vy(T)2.

Constraints:

v = u̇

a = v̇

ma = N + F − mgez

u(0) = u0 u(T) = uf ,

where

• m is the mass of the golf ball.

• g is the acceleration due to gravity.

• ez is a unit vector in the positive z direction.

and ...

21 Putting—Continued

• N = (Nx, Ny, Nz) is the normal force:

Nz = m
g − ax(t)∂z

∂x
− ay(t)∂z

∂y
+ az(t)

(∂z
∂x

)2 + (∂z
∂y

)2 + 1

Nx = −
∂z

∂x
Nz

Ny = −
∂z

∂y
Nz.

• F is the force due to friction:

F = −µ‖N‖
v

‖v‖
.

21 Putting—Continued

• N = (Nx, Ny, Nz) is the normal force:

Nz = m
g − ax(t)∂z

∂x
− ay(t)∂z

∂y
+ az(t)

(∂z
∂x

)2 + (∂z
∂y

)2 + 1

Nx = −
∂z

∂x
Nz

Ny = −
∂z

∂y
Nz.

• F is the force due to friction:

F = −µ‖N‖
v

‖v‖
.

21 Putting—Continued

• N = (Nx, Ny, Nz) is the normal force:

Nz = m
g − ax(t)∂z

∂x
− ay(t)∂z

∂y
+ az(t)

(∂z
∂x

)2 + (∂z
∂y

)2 + 1

Nx = −
∂z

∂x
Nz

Ny = −
∂z

∂y
Nz.

• F is the force due to friction:

F = −µ‖N‖
v

‖v‖
.

22 Putting—Specific Example

• Discretize continuous time into n = 200 discrete time points.

• Use finite differences to approximate the derivatives.

constraints 597

variables 399

time (secs)

LOQO 14.1

LANCELOT > 600.0

SNOPT 4.1

C:/user/rvdb/tex/trajopt/putt/putt.wrl

23 Goddard Rocket Problem

Objective:

maximize h(T);

Constraints:

v = ḣ

a = v̇

θ = −cṁ

ma = (θ − σv2e−h/h0) − gm

0 ≤ θ ≤ θmax

m ≥ mmin

h(0) = 0 v(0) = 0 m(0) = 3

where

• θ = Thrust , m = mass

• θmax, g, σ, c, and h0 are given constants

• h, v, a, Th, and m are functions of time 0 ≤ t ≤ T .

23 Goddard Rocket Problem

Objective:

maximize h(T);

Constraints:

v = ḣ

a = v̇

θ = −cṁ

ma = (θ − σv2e−h/h0) − gm

0 ≤ θ ≤ θmax

m ≥ mmin

h(0) = 0 v(0) = 0 m(0) = 3

where

• θ = Thrust , m = mass

• θmax, g, σ, c, and h0 are given constants

• h, v, a, Th, and m are functions of time 0 ≤ t ≤ T .

24 Goddard Rocket Problem—Solution

constraints 399

variables 599

time (secs)

LOQO 5.2

LANCELOT (IL)

SNOPT (IL)

http://www.princeton.edu/~rvdb/goddard.html

	Acknowledgements
	Outline
	Introduce Slack Variables
	Associated Log-Barrier Problem
	First-Order Optimality Conditions
	Symmetrize Complementarity Conditions
	Apply Newton's Method
	Reduced KKT System
	Modifications for Convex Optimization
	Step-Length Control: Merit Function
	Nonconvex Optimization: Diagonal Perturbation
	Notes:
	Nonconvex Optimization: Jamming
	Modifications for General Problem Formulations
	Focus of Free Variables
	Celestial Mechanics---Periodic Orbits
	Specific Example
	Putting on an Uneven Green
	Putting---Two Approaches
	Putting---Continued
	Putting---Continued
	Putting---Specific Example
	Goddard Rocket Problem
	Goddard Rocket Problem---Solution

