The Earth Is Not Flat

An Analysis of a Sunset Photo

Can a photo of the sunset
over Lake Michigan reveal the
shape of our planet?

I will show you how we can...
measure something B / G (the size of the Earth)
by first measuring something small (my height), and measuring an angle (off from a photograph)
and then doing some geometry.

The Earth is a big sphere. How do we know?
Several ways. One way is to look at a Lunar eclipse...

Photo taken March 3, 2007, at about 8pm.

From a lunar eclipse, we can determine that the Earth is about 3 or 4 times larger than the Moon. But, how big is the Earth?

Next total lunar eclipse visible from the "east coast" is on January 20/21, 2019.

How big is the Earth? How can we find out?
First Method: Look it up on Wikipedia.
You'll get the right answer (radius $=3,960$ miles), but no satisfaction.
Second Method: Air travel.
I've flown to Bangkok Thailand.
It's about a 17 hour flight. It's about halfway around the Earth. Jets fly at about 600 mph . So, the distance I flew is about

17 hours $\times 600$ miles $/$ hour $=10,200$ miles
The circumference is then about 20,000 miles and radius is therefore about $20,000 / 2 \pi=3,250$ miles. This is just a rough estimate.

IS THERE AN EASIER WAY?

侸

A close-up.
Using this picture, some geometry, and a little trigonometry, I was able to compute that the Earth's radius is about 5000 miles.

A smooth lake is supposed to act like a mirror

The Sun's reflection should have looked something like this...

Or not!

What's going on?

Lake Michigan is not a flat mirror.

Its surface is curved because the Earth is a sphere.

That's why we can't see the shore on the opposite side-it's below the horizon!

Geometry - If the Earth Were Flat!

Lake Michigan

Earth

$$
\begin{array}{ll}
\alpha=\beta & \text { alternate interior angles are equal } \\
\beta=\gamma & \text { alternate interior angles are equal } \\
\gamma=\delta & \text { angle of incidence equals angle of reflection (from Physics!) } \\
\delta=\epsilon & \text { alternate interior angles are equal }
\end{array}
$$

Therefore,

$$
\alpha=\epsilon .
$$

The reflection dips just as far below the horizon as the Sun stands above the horizon.

Geometry - The Earth Is Not Flat

Draw a picture.

Label everything of possible relevance.

Identify what we know:
α Angle between horizon and top of Sun (measured from photo)
β Angle between horizon and "top" of Sun in reflection (measured)
h Height of "eye-level" above "water-level".

Geometry - The Earth Is Not Flat

Everything else is the stuff we need to figure out:

- Three Angles:
γ Angle of reflection off water.
θ Angle between observer (me) and point of reflection.
φ Angle between observer (me) and point of horizon.

Plus...

Geometry - The Earth Is Not Flat

- Three Distances (lengths):
d Distance to point of reflection.
D Distance to horizon.
r Radius of Earth. \Longleftarrow This one is key!!!

What We Know (Measure!)

69 pixels above horizon

29 pixels below horizon

Sun is 317 pixels in diameter

The Sun is $1 / 2^{\circ}$ in diameter. Therefore, 1° equals $2 \times 317=634$ pixels.
And so,

$$
\alpha=69 \text { pixels } \times \frac{1 \text { degree }}{634 \text { pixels }}=0.1088 \text { degrees }
$$

and

$$
\beta=29 \text { pixels } \times \frac{1 \text { degree }}{634 \text { pixels }}=0.0457 \text { degrees }
$$

And, we assume that eye level is

$$
h=7 \text { feet }
$$

What We Need To Figure Out:

- Angles:
γ Angle of reflection off water.
θ Angle between observer (me) and point of reflection.
φ Angle between observer (me) and point of horizon.
- Distances (lengths):
d Distance to point of reflection.
D Distance to horizon.
r Radius of Earth. \Longleftarrow This one is key!!!

That's SIX UNKNOWNS.

We need SIX (distinct!) EQUATIONS.

Equation 1:

The sum of the angles around a quadrilateral is 360°.

Hence,

$$
(\varphi-\theta)+90+\beta+(270-\gamma)=360
$$

Simplifying, we get

$$
\varphi+\beta=\theta+\gamma
$$

Equation 2:

Given two parallel lines cut by a transversal, the consecutive interior angles are supplementary-they add up to 180°.

Hence,

$$
\alpha+\beta+\sigma=180
$$

Also, because angle of incidence equals angle of reflection, we see that

$$
\gamma+\sigma+\gamma=180
$$

Combining these two equations, we get

$$
\alpha+\beta=180-\sigma=2 \gamma
$$

So, our second equation is

$$
\alpha+\beta=2 \gamma
$$

Equation 3:

The distance from the center of the Earth to eye level is

$$
r+h .
$$

But, it is also

$$
D \sin (\varphi)+r \cos (\varphi) .
$$

Hence,

$$
D \sin (\varphi)+r \cos (\varphi)=r+h .
$$

Equation 4:

The "horizontal" distance from the point of the horizon on the water to the vertical line from the center of the Earth to eye level can be computed two ways:

Equation 5:

Equation 5 is analogous to Equation 3, using the "point of reflection" in place of the "horizon".

$$
d \sin (\theta+\gamma)+r \cos (\theta)=r+h
$$

Equation 6:

Equation 6 is analogous to Equation 4 in the same way.

Six Equations in Six Unknowns:

$$
\begin{align*}
\varphi+\beta & =\theta+\gamma \tag{1}\\
\alpha+\beta & =2 \gamma \tag{2}\\
D \sin (\varphi)+r \cos (\varphi) & =r+h \tag{3}\\
D \cos (\varphi) & =r \sin (\varphi) \tag{4}\\
d \sin (\theta+\gamma)+r \cos (\theta) & =r+h \tag{5}\\
d \cos (\theta+\gamma) & =r \sin (\theta) . \tag{6}
\end{align*}
$$

Not hard to solve.
Use (2) to solve for γ.
Solve (4) for D and then substitute in for D in (3). Solve (6) for d and then substitute in for d in (5). And so on...

Three Equations in Three Unknowns:

$$
\begin{align*}
\gamma & =(\alpha+\beta) / 2 \tag{2}\\
D & =r \sin (\varphi) / \cos (\varphi) \tag{4}\\
d & =r \sin (\theta) / \cos (\theta+\gamma) \tag{6}\\
\varphi-\theta & =(\alpha-\beta) / 2 \tag{1}\\
r & =(r+h) \cos (\varphi) \tag{3}\\
r \cos (\gamma) & =(r+h) \cos (\theta+\gamma) \tag{5}
\end{align*}
$$

Divide (3) and (5) by $r+h$ and eliminate r :
$\cos (\varphi)=\cos (\theta+\gamma) / \cos (\gamma)=\cos (\varphi+\beta) / \cos (\gamma)$
Expand the cosine of the sum, replace $\sin (\varphi)$ with $\sqrt{1-\cos ^{2}(\varphi)}$ and solve for $\cos (\varphi)$:

$$
\cos (\varphi)=\frac{\sin (\beta)}{\sqrt{1-2 \cos (\beta) \cos (\gamma)+\cos ^{2}(\gamma)}}
$$

Substitute this formula for $\cos (\varphi)$ into (3) and solve for r...

Answer for r (radius of Earth) is:

$$
r=\frac{h}{\frac{\sqrt{1-2 \cos \beta \cos \gamma+\cos ^{2} \gamma}}{\sin \beta}-1}
$$

where

$$
\gamma=\frac{\alpha+\beta}{2}
$$

Plugging in our values for α, β, and h, we get

$$
r=4,977 \text { miles }
$$

Recall that the right answer is 3,960 miles. Fixing α and β, the height h that corresponds to this answer is:

$$
h=7 \times \frac{3960}{4977}=5.56 \text { feet }=5^{\prime} 7^{\prime \prime}
$$

Fix α. How does the ratio β / α vary with $r \ldots$

In terms of pixels...

Morals:

- Always be mindful of units.
- Always draw a picture and label things.
- If there are six unknowns, you need six (distinct) equations.
- A picture need not be to scale; it can exagerate angles, distances, etc.

Conclusion: ALGEBRA AND GEOMETRY ARE BOTH FUN AND USEFUL.

